Visualise the population of Switzerland using Python and bokeh

As some sort of simple introduction to displaying data on a map we can visualize the population of Switzerland. For this we need data on population per canton and the map to plot the data on. Fortunatley both are freely available.

<div class="cell border-box-sizing text_cell rendered">
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Getting-the-map">Getting the map</h3>
Shapefiles with the data on cantons and much more can be downloaded from <a href="https://shop.swisstopo.admin.ch/en/products/landscape/boundaries3D">https://shop.swisstopo.admin.ch/en/products/landscape/boundaries3D</a>
<h3 id="Population-data">Population data</h3>
The population data is available in the official report at:
<a href="https://www.bfs.admin.ch/bfs/en/home/statistics/population.gnpdetail.2017-0586.html">https://www.bfs.admin.ch/bfs/en/home/statistics/population.gnpdetail.2017-0586.html</a> unfortunatley only as a pdf. But it is relativly quick o copy-paste it to a csv file.
<h2 id="Imports">Imports</h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="c1">#basic infrastructure</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>

<span class="c1">#plotting</span>
<span class="kn">from</span> <span class="nn">bokeh.models</span> <span class="k">import</span> <span class="n">ColumnDataSource</span><span class="p">,</span> <span class="n">HoverTool</span><span class="p">,</span> <span class="n">LinearColorMapper</span><span class="p">,</span> <span class="n">ColorBar</span><span class="p">,</span> <span class="n">AdaptiveTicker</span>
<span class="kn">from</span> <span class="nn">bokeh.io</span> <span class="k">import</span> <span class="n">show</span><span class="p">,</span> <span class="n">output_file</span><span class="p">,</span> <span class="n">output_notebook</span>
<span class="kn">from</span> <span class="nn">bokeh.plotting</span> <span class="k">import</span> <span class="n">figure</span><span class="p">,</span> <span class="n">save</span>
<span class="kn">from</span> <span class="nn">bokeh</span> <span class="k">import</span> <span class="n">palettes</span>

<span class="c1">#colormaps for bokeh</span>
<span class="kn">import</span> <span class="nn">colorcet</span> <span class="k">as</span> <span class="nn">cc</span>

<span class="c1">#read shapefiles</span>
<span class="kn">import</span> <span class="nn">shapefile</span>

<span class="c1">#Data path</span>
<span class="n">path</span> <span class="o">=</span> <span class="s1">'/Users/erikfrojdh/Dropbox/Data/'</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt"></div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Reading-population-data">Reading population data</h2>
After manually copy pasting the data into a text file we can read it using pandas and read_csv.

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="c1">#Reading data</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">path</span><span class="p">,</span><span class="s1">'bevolkerung.csv'</span><span class="p">),</span> 
                 <span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span><span class="n">skipinitialspace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

<span class="c1">#Create a dict to look up values</span>
<span class="n">pop</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">to_dict</span><span class="p">(</span><span class="s1">'index'</span><span class="p">)</span>

<span class="c1">#display sorted values</span>
<span class="n">df</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s1">'Total'</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
<div><style scoped="">
    .dataframe tbody tr th:only-of-type {<br />        vertical-align: middle;<br />    }</p>
<p>    .dataframe tbody tr th {<br />        vertical-align: top;<br />    }</p>
<p>    .dataframe thead th {<br />        text-align: right;<br />    }<br /></style>
<table class="dataframe" border="1">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Total</th>
<th>Mann</th>
<th>Frau</th>
<th>Schweizer</th>
<th>Ausländer</th>
</tr>
<tr>
<th>Kanton</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>Zürich</th>
<td>1487969</td>
<td>739814</td>
<td>748155</td>
<td>1092631</td>
<td>395338</td>
</tr>
<tr>
<th>Bern</th>
<td>1026513</td>
<td>503789</td>
<td>522724</td>
<td>861614</td>
<td>164899</td>
</tr>
<tr>
<th>Vaud</th>
<td>784822</td>
<td>385389</td>
<td>399433</td>
<td>520957</td>
<td>263865</td>
</tr>
<tr>
<th>Aargau</th>
<td>663462</td>
<td>333364</td>
<td>330098</td>
<td>499712</td>
<td>163750</td>
</tr>
<tr>
<th>St. Gallen</th>
<td>502552</td>
<td>251526</td>
<td>251026</td>
<td>382829</td>
<td>119723</td>
</tr>
<tr>
<th>Genève</th>
<td>489524</td>
<td>237112</td>
<td>252412</td>
<td>292641</td>
<td>196883</td>
</tr>
<tr>
<th>Luzern</th>
<td>403397</td>
<td>200897</td>
<td>202500</td>
<td>329264</td>
<td>74133</td>
</tr>
<tr>
<th>Ticino</th>
<td>354375</td>
<td>172877</td>
<td>181498</td>
<td>254828</td>
<td>99547</td>
</tr>
<tr>
<th>Valais</th>
<td>339176</td>
<td>168072</td>
<td>171104</td>
<td>260444</td>
<td>78732</td>
</tr>
<tr>
<th>Fribourg</th>
<td>311914</td>
<td>156334</td>
<td>155580</td>
<td>242087</td>
<td>69827</td>
</tr>
<tr>
<th>Basel-Landschaft</th>
<td>285624</td>
<td>140142</td>
<td>145482</td>
<td>221990</td>
<td>63634</td>
</tr>
<tr>
<th>Thurgau</th>
<td>270709</td>
<td>136199</td>
<td>134510</td>
<td>204378</td>
<td>66331</td>
</tr>
<tr>
<th>Solothurn</th>
<td>269441</td>
<td>134300</td>
<td>135141</td>
<td>210240</td>
<td>59201</td>
</tr>
<tr>
<th>Graubünden</th>
<td>197550</td>
<td>98853</td>
<td>98697</td>
<td>160932</td>
<td>36618</td>
</tr>
<tr>
<th>Basel-Stadt</th>
<td>193070</td>
<td>93212</td>
<td>99858</td>
<td>124026</td>
<td>69044</td>
</tr>
<tr>
<th>Neuchâtel</th>
<td>178567</td>
<td>87312</td>
<td>91255</td>
<td>132878</td>
<td>45689</td>
</tr>
<tr>
<th>Schwyz</th>
<td>155863</td>
<td>79852</td>
<td>76011</td>
<td>123597</td>
<td>32266</td>
</tr>
<tr>
<th>Zug</th>
<td>123948</td>
<td>62684</td>
<td>61264</td>
<td>89809</td>
<td>34139</td>
</tr>
<tr>
<th>Schaffhausen</th>
<td>80769</td>
<td>40020</td>
<td>40749</td>
<td>59889</td>
<td>20880</td>
</tr>
<tr>
<th>Jura</th>
<td>73122</td>
<td>36158</td>
<td>36964</td>
<td>62471</td>
<td>10651</td>
</tr>
<tr>
<th>Appenzell Ausserrhoden</th>
<td>54954</td>
<td>27778</td>
<td>27176</td>
<td>46044</td>
<td>8910</td>
</tr>
<tr>
<th>Nidwalden</th>
<td>42556</td>
<td>21795</td>
<td>20761</td>
<td>36521</td>
<td>6035</td>
</tr>
<tr>
<th>Glarus</th>
<td>40147</td>
<td>20329</td>
<td>19818</td>
<td>30650</td>
<td>9497</td>
</tr>
<tr>
<th>Obwalden</th>
<td>37378</td>
<td>18965</td>
<td>18413</td>
<td>31892</td>
<td>5486</td>
</tr>
<tr>
<th>Uri</th>
<td>36145</td>
<td>18427</td>
<td>17718</td>
<td>31850</td>
<td>4295</td>
</tr>
<tr>
<th>Appenzell Innerrhoden</th>
<td>16003</td>
<td>8237</td>
<td>7766</td>
<td>14230</td>
<td>1773</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt"></div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Reading-shape-data">Reading shape data</h2>
To read the shapefile we can use the <strong><a href="https://pypi.python.org/pypi/pyshp/1.2.12">shapefile</a></strong> package. Each canton is stored with a record and a shape. Using iterShapeRecords we can iterate over them to extract the name and the points for the shape.

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="c1">#assuming the data was exctracted to path</span>
<span class="n">data_pathname</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> 
                             <span class="s1">'BOUNDARIES_2017/DATEN/swissBOUNDARIES3D/'</span>\
                             <span class="s1">'SHAPEFILE_LV95_LN02/swissBOUNDARIES3D_1_3_TLM_KANTONSGEBIET.shp'</span><span class="p">)</span>

<span class="n">data</span> <span class="o">=</span> <span class="n">shapefile</span><span class="o">.</span><span class="n">Reader</span><span class="p">(</span><span class="n">data_pathname</span><span class="p">)</span>

<span class="c1">#lists to hold results</span>
<span class="n">x</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">y</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">canton_names</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">population</span> <span class="o">=</span> <span class="p">[]</span>

<span class="c1">#iterate over records and shapes</span>
<span class="k">for</span> <span class="n">sr</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">iterShapeRecords</span><span class="p">():</span> 
    <span class="c1">#The names sometimes include special characters </span>
    <span class="c1">#in this case they are returned as byte strings instead</span>
    <span class="c1">#of strings, so before adding we try to decode</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">name</span> <span class="o">=</span> <span class="n">sr</span><span class="o">.</span><span class="n">record</span><span class="p">[</span><span class="mi">18</span><span class="p">]</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="s1">'cp1252'</span><span class="p">)</span>
    <span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
        <span class="n">name</span> <span class="o">=</span> <span class="n">sr</span><span class="o">.</span><span class="n">record</span><span class="p">[</span><span class="mi">18</span><span class="p">]</span>
        
    <span class="c1">#Each canton can contain multiple closed loops </span>
    <span class="c1">#In order to plot we first need to extract them</span>
    <span class="c1">#To get the right color scale we also need one to </span>
    <span class="c1">#duplicate the population note for the canton</span>
    <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">start</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">sr</span><span class="o">.</span><span class="n">shape</span><span class="o">.</span><span class="n">parts</span><span class="p">):</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">stop</span> <span class="o">=</span> <span class="n">sr</span><span class="o">.</span><span class="n">shape</span><span class="o">.</span><span class="n">parts</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>
        <span class="k">except</span> <span class="ne">IndexError</span><span class="p">:</span>
            <span class="n">stop</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">sr</span><span class="o">.</span><span class="n">shape</span><span class="o">.</span><span class="n">points</span><span class="p">)</span>
        <span class="c1">#append x,y and lookup population</span>
        <span class="n">x</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="p">[</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">sr</span><span class="o">.</span><span class="n">shape</span><span class="o">.</span><span class="n">points</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="n">stop</span><span class="p">]]</span> <span class="p">)</span>
        <span class="n">y</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="p">[</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">sr</span><span class="o">.</span><span class="n">shape</span><span class="o">.</span><span class="n">points</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="n">stop</span><span class="p">]]</span> <span class="p">)</span>
        <span class="n">canton_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
        <span class="n">population</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">pop</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">'Total'</span><span class="p">])</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt"></div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">

From the data we can now create a ColumnDataSource which will be used to create the patches. Then we set up a color_mapper to translate the population into colors. Since the colormaps included in bokeh supports relatively few numbers we use colorcet to set up.

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="c1">#data source</span>
<span class="n">source</span> <span class="o">=</span> <span class="n">ColumnDataSource</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span>
    <span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="p">,</span>
    <span class="n">name</span><span class="o">=</span><span class="n">canton_names</span><span class="p">,</span>
    <span class="n">population</span> <span class="o">=</span> <span class="n">population</span>
<span class="p">))</span>

<span class="c1">#colormap from colorcet, between 0 and the maximum population</span>
<span class="n">color_mapper</span> <span class="o">=</span> <span class="n">LinearColorMapper</span><span class="p">(</span>
    <span class="n">palette</span><span class="o">=</span><span class="n">cc</span><span class="o">.</span><span class="n">blues</span><span class="p">,</span>
    <span class="n">low</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
    <span class="n">high</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">Total</span><span class="o">.</span><span class="n">max</span><span class="p">()</span>
<span class="p">)</span>

<span class="c1">#tools visible in the figure</span>
<span class="n">tools</span> <span class="o">=</span> <span class="s2">"pan,wheel_zoom,reset,hover,save"</span>
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="n">fig</span> <span class="o">=</span> <span class="n">figure</span><span class="p">(</span>
    <span class="n">title</span><span class="o">=</span><span class="s2">"Population per canton"</span><span class="p">,</span> 
    <span class="n">tools</span><span class="o">=</span><span class="n">tools</span><span class="p">,</span>
    <span class="n">x_axis_location</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> 
    <span class="n">y_axis_location</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">match_aspect</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">grid</span><span class="o">.</span><span class="n">grid_line_color</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">fig</span><span class="o">.</span><span class="n">patches</span><span class="p">(</span><span class="s1">'x'</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">,</span> <span class="n">source</span><span class="o">=</span><span class="n">source</span><span class="p">,</span>
          <span class="n">fill_color</span><span class="o">=</span><span class="p">{</span><span class="s1">'field'</span><span class="p">:</span> <span class="s1">'population'</span><span class="p">,</span><span class="s1">'transform'</span><span class="p">:</span> <span class="n">color_mapper</span><span class="p">},</span>
          <span class="n">fill_alpha</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">line_color</span><span class="o">=</span><span class="s2">"black"</span><span class="p">,</span> <span class="n">line_width</span><span class="o">=</span><span class="mf">0.3</span><span class="p">)</span>

<span class="c1">#setup tooltip</span>
<span class="n">hover</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">select_one</span><span class="p">(</span><span class="n">HoverTool</span><span class="p">)</span>
<span class="n">hover</span><span class="o">.</span><span class="n">point_policy</span> <span class="o">=</span> <span class="s2">"follow_mouse"</span>
<span class="n">hover</span><span class="o">.</span><span class="n">tooltips</span> <span class="o">=</span> <span class="p">[(</span><span class="s2">"Canton"</span><span class="p">,</span> <span class="s2">"@name"</span><span class="p">),(</span><span class="s2">"Population"</span><span class="p">,</span> <span class="s2">"@population"</span><span class="p">),</span>
                  <span class="p">(</span><span class="s2">"(E, N)"</span><span class="p">,</span> <span class="s2">"($x, $y)"</span><span class="p">)]</span>

<span class="n">output_file</span><span class="p">(</span><span class="s1">'test.html'</span><span class="p">)</span>
<span class="n">show</span><span class="p">(</span><span class="n">fig</span><span class="p">)</span>
</pre>
</div>
</div>
</div>
</div>
<iframe src="http://www.erikfrojdh.com/wp-content/uploads/2017/12/test.html" width="100%" height="650px" scrolling="no"></iframe>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt"></div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Matplotlib-rendering">Matplotlib rendering</h2>
Depending on your preferences or output format sometimes matplotlib renders nicer images.

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3">
<pre><span class="kn">import</span> <span class="nn">matplotlib</span> <span class="k">as</span> <span class="nn">mpl</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Polygon</span><span class="p">,</span> <span class="n">Rectangle</span>
<span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
<span class="n">sns</span><span class="o">.</span><span class="n">set</span><span class="p">()</span>
<span class="n">sns</span><span class="o">.</span><span class="n">set_style</span><span class="p">(</span><span class="s1">'white'</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">set_context</span><span class="p">(</span><span class="s1">'talk'</span><span class="p">,</span> <span class="n">font_scale</span><span class="o">=</span><span class="mf">1.1</span><span class="p">)</span>

<span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">xx</span><span class="p">,</span><span class="n">yy</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">):</span>
    <span class="n">xy</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span><span class="n">yy</span><span class="p">))</span>
    <span class="n">polygon</span> <span class="o">=</span> <span class="n">Polygon</span><span class="p">(</span><span class="n">xy</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
    <span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">polygon</span><span class="p">)</span>
    
<span class="n">p</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'Reds'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> 
                    <span class="n">linestyle</span> <span class="o">=</span> <span class="s1">'-'</span><span class="p">,</span> 
                    <span class="n">linewidth</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
                    <span class="n">edgecolor</span> <span class="o">=</span> <span class="s1">'Black'</span><span class="p">)</span>
<span class="n">p</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">population</span><span class="p">))</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">14</span><span class="p">,</span><span class="mi">7</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
<span class="c1"># ax.plot(xy)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">autoscale_view</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_aspect</span><span class="p">(</span><span class="s1">'equal'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea "><img src=" AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo dHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XVYVNkbwPHvDDCkdKggpYCKAYq5 BqyNia3Y2N2ta63+7Fi7FddeEzvXDmzRVcFARRCDhgFm5vcHLrusKCEC6vk8zz4Lc88959yDcN85 c+57JCqVSoUgCIIgCIIg/ECked0BQRAEQRAEQchtIggWBEEQBEEQfjgiCBYEQRAEQRB+OCIIFgRB EARBEH44IggWBEEQBEEQfjjqed2B/CwhIYG7d+9iZmaGmppaXndHEARBEAThu6BQKAgPD6dUqVJo aWnlSR9EEPwZd+/exdvbO6+7IQiCIAiC8F36/fffcXNzy5O2RRD8GWZmZkDKD6hgwYJ53Jvsk8vl PHr0CAcHBzQ1NfO6O98UMXbZI8Yte8S4ZZ8Yu+wR45Z9Yuyy5+9x09fXp2vXrqmxVl4QQfBn/L0E omDBglhZWeVxb7IvISGBiIgILC0t8+wjh2+VGLvsEeOWPWLcsk+MXfaIccs+MXbZ8/e4GRoaAuTp clPxYJwgCIIgCILwwxFBsCAIgiAIgvDDEUGwIAiCIAiC8MPJUhAsl8tp2LAhZ86cSX3t/v37dOjQ ARcXF37++WdWrVqV5pzQ0FB69uyJq6srtWvXZt++ffnquCAIgiAIgvDjyXQQHB8fz6BBgwgMDEx9 LSYmBh8fHxwdHdm3bx/jx49n2bJl7N69O7VMv379kMlk7Nixg+7duzN27FiuX7+eb44LgiAIgiAI P55MZYe4e/cuo0aNQl09bfGQkBCqVKnCuHHjUFNTw9ramqpVq3LlyhW8vLy4evUqDx48YN26dejr 61OsWDFu3bqFr68v5cqVy/PjgiAIgiAIwo8pUzPBly9fpnbt2mzbti3N646OjsydOxc1NTVUKhX+ /v5cvXqVKlWqAHDjxg2cnJzQ19dPPcfNzY2bN2/mi+OCIAiCIAjCjylTM8E+Pj4ZlqlQoQLR0dF4 eHjQsGFDAMLCwjA3N09TztTUlNDQ0HxxPLPkcjkJCQlZOic/kcvlaf4vZJ4Yu+wR45Y9YtyyT4xd 9ohxyz4xdtnz93glJibmcU9yaLMMpVLJunXrCA0NZdKkScyYMYPx48cTHx//0S4qMpkMpVJJcnJy nh//7/KOT3n06BERERGZHY5869/ruYWsEWOXPWLcskeMW/aJscseMW7ZJ8Yue549e5bXXciZIFgq lVK6dGlKly5NbGws48ePZ+TIkWhpaX0UPCYmJqKhoYG6unqeH88sBwcHLC0tM10+v5HL5QQGBlKs WDGxtWMWibHLHjFu2SPGLfvE2GWPGLfsE2OXPX+Pm42NTV535cuC4BcvXhAUFETNmjVTX3NwcCAp KYmYmBgKFizInTt30pwTHh6eukQhr49nlqam5nexJeL3ch15QYxd9ohxyx4xbtknxi57xLhlnxi7 7JHJZHndhS/bLOPWrVsMGjSI2NjY1NcCAgIwNjbG2NgYFxcXHjx4QExMTOrxa9eu4erqCpDnxwVB EARBEIQf0xcFwe7u7hgbGzN27FgeP37M8ePHmTdvHv369QNSMjHY29szfPhwHj58yLZt2/Dz86Nj x4754rggCIIgCILwY/qiIFhXV5c1a9YQExNDixYtmDJlCj4+PnTo0CGlcqmUxYsXI5fLadmyJatX r2bGjBm4uLjki+OCIAhC7lCpVHndBUEQhDSyvCb4wYMHab63s7NjzZo1nyxvZWXFunXr8u1xQRAE 4et6+vQpdnZ2LFywgAEDBwLw5s0bDA0N0dDQyOPeCYLwo/qimWBBEARByMjvmzZRoZwLgwYPRl9f H3V1daytrdHX12fokCGps8Tv37+nS+fOLFq4MI97LAjCjyBHUqQJgiAIwqdERkbiWroU3bzbYmdt zblLVxjU2weJRIJpsVK4ubnR3tubObNns3vPbjZs3Eiv3r1F2ilBEL4qMRMsCIIgfFXOzs6s3LCJ 7Xv8qFfLnanjRmJqYoKujg5uri4kJScDcPfuHXp36YimpibVqv3ElClTePr0ad52XhCE75aYCRYE QRBynFKp5PDhw6xZvRodHR2Cg4OxtrbmxcsQrCwLA3Dhij/+N27i5eUFQIUKFbly4RxRzx6wfN1G Bo2ZyF9/3Wfz5i15eSmCIHynxEywIAiCkCNCQkIICwtj+bJluLq4MHb0KGpWdCX4SRDW1tYUsbJM kyWiUvlyACxcsACAKlWrcv7yVWQyGQN7dcdv60bu3L6DXC7Pk+sRBOH7JmaCBUEQhGy7cuUKi3/7 jbi4OP7YtQsAbW1tNixZQIsmDZFKpXRu15oLl/2pV8sdqfSfuRddXR06tmlJVFQUAMHBwbx7/55X oWEUKmhB+bJluBsQwJUrV6hevXqeXJ8gCN8vEQQLgiAI2XL58mUaNWpIjcqVsCliRci9G5y7dAWl UkmrZo1Tyxno69Ogzs/p1hEbF49SqSQsLIxu3bpRu2Z1ChW0AEC/gB5aWlpYW1tz7949Jk+axNt3 b+nWzYf27dvnyjUKgvD9EkGwIAiCkGXBwcE0bOjJqvmz8WrUIPX1fwe/mbFk1q84VqzOqtWradKg Hivnz0o9pqOjQ/UqlejXrx8HDhygZ+cOyCRGeHt7o1QqUzdmEgRByA4RBAuCIAhZtmH9etq38EoT AGdHQQtztq9ZzqPHjxnQ0+ej46MH9aNV117M/3Uyg/v0AKBSeVd69uyJkaEhDRs1+qL2BUH4cYkg WBAEQciSCePHs2z5Mg5t25Qj9dWv7UF9PNI99nONarwNCkj9PvzNWyQSCeamJvj5+YkgWBCEbBNB sCAIgpBpCoWCBQsXcmrvDtxcy+Zq23K5nBadexAVF4dP9x54f2Y5RFBQEEWKFEEmk+ViDwVB+JaI FGmCIAhCps2fNw97W2tcy5TK9bYXLF9FQlIyFy9eYsLEidjb26dbbsjgwRQrVozJkyfncg8FQfiW iCBYEARByLT4+HhKODjkSdunz19iwMCBaGtrp3s8OTmZIUOGsGDhQiQSCdOnT0+Tl1gQBOHfRBAs CIIgZFrnLl3Ytnsvd+7dz/W2S5cozo7t21PzCv+bXC6ncuXKLF++nLKlnFOD35CQkNzupiAI3wgR BAuCIAiZsmb1apycnAAo4Zj7s8GjB/fjxo3rGBgYMHLECJRKZeoxFxcXAA5s8+XmmWO8fniH0YP7 Y2VlxeRJk4iOjs71/gqCkL+JIFgQBEHI0LKlS+neowdjhwzg1f2baGpqfrW2QsNeM2LiFAaMGsfq jb/Tb8RYpCaWnL98led3/Nn7+zpmz5mTJrB9+vQp44cNxrNOLQDMTE0YO2QgAJMmT0ZfX58WzZun CZwFQfixiewQgiAIwidduXIFH59uPH/+nL8un8HJodhXb/Ptu/fMWbw89XsHBwdGjx7NkHGTaFy/ Lk+ePadL584YGBikltHQ0OD0+Qus8d2MnY01P9eoRoECeuzbvJ7wN2+pVbM6tmUr0rVrV8zNzFBT U2P8hAno6el99esRBCF/EjPBgiAIQrrCw8Np07o1zg5FCbp2IVcCYICSxR2ZMmYE9vZ2BAcHc/fu XcaOHUvQk6f437jF8T/PUadu3TTnbN++nRKly3Lk7CVqNWvNqg2/A9C4fl26dWiHTREr5k79hWNH jzBn7lxmzpqFv79/rlyPIAj5kwiCBUEQhHSNGjmSyuVd2bpmOSbGxl+1LZVKxYXLV4mMikIikdCq aSMeP37CixcvmDVrFuHh4TT09OSX/83h6KnTWFhYpFnaUL9+fXr16sVGX1/mzJ5NzyEjGDYhbYq0 UiWceBUalvr9rj/++KrXJAhC/iaWQwiCIAjpKly4MLM3byboyVOK2tl+tXbcPOrzIDAICaClrUVy cjLvIyJp17YtPbv7UMTEgIXz51HT3YM/Dh4EoEsHbxKSkrAwN6d+A0/6DxiQWt/f65WjY2LTtFPz pyqpX48ePZohQ4Zku8/x8fHMnPk/zpw6RRFra+p7NqRmzZoULlw423UKgpC7RBAsCIIgpGvar79i bGxM3xFjObJz81dr59qt21RChguaXIyN5jaJaGtpsWPHDsb36sT4Xh15HvqaXcfPUPeXYXTz8kQi kfAq/C2hb97h63eMShUqMH/hQpydndmyZQv7Nq+ncf20SyYOHjsJwIULF6hSpUp6XcmUu3fv0rlj B+zMjRnZvjFBwS/ZumY5/fv2RVtbm9KlnHEuXYYEeQLPnz7FvVZtevbsia6u7heNkyAIOUsEwYIg CEK6FAoFunp6HD15moSEBLS0tHK0/ujoGLbv2UfDurUJPHoagCpo4ogafopkaldxY0LvTgBYF7Jg cMdWac4vbG5KYXNTypV0pErZkvTp24dr/v5cuHiRMe/fsfb3bQB079iOOu41KFXCCfdqVfFq1ozx 48enmT3OiFKpZNOmTezdvYtz584xsVdHerdugkQigaoV6NO2GSqViqcvQ7kb+IRbDwIxl8mo4VGR bYf3sXTxbxw4dBhHR8ecGTxBEL6YCIIFQRCEdM2ZPZvly5exacXiHA2AVSoVO/f60aXfYOLi49HQ 0MD9X7cjE9TR0ZASGRNDRFQMhvoZZ3BoXc+Daq6lmbpyEzaWhbE2NUJTkYBEIqFL30EYGxvx5/5d nNq3k6AnT6lYpyHuHh6UKpXx9s9RUVFMnDiRU0cO0q9NU9aN7oWezse71kkkEuysCmFnVYjG7lVT X29ZtyZrdh3gp6pVaOjpSQ13DywsLFi1YjlNmnnRrVu3TI6cIAg5STwYJwiCIKQrNjaWapUq4lnn ZxQKRZbPl8vlzFuyApeadTFzKI1KpSIhIYGu/YfQulsv4uLjqYCMtkky7NFIc26DOLh06x4zVv+e 6fYKm5vi49WAoR1bUMLemnkj+/P7zAm8OrkTiVLBhOmziIyKoqidLT07ebNu7drP1qdUKlmxYgVl S5fi1cO77Jz7C91bNEw3AM6IT/OGXPJdTEUbM/y2+jJsYH9ql7Zn/JjRbN26NbW99LZ5fv/+PZcu XWLDhg3s2bOHxMTELLcvCMLHxEywIAiCkK5hw4fj7OyMSVFnKpRzZdeGVVgWLpTheQqFgmVrNzBg 1HjMzMxYuXIlXl5eSE0sKVyoIPb2RfHduJExo0YR/+ot6kg+qkMPKQYaMm4+eJSlPo+ev5Iz/jdQ KFVYmBgxvGtbpFIp80f0pfe0BRj6bubJzcs4FrVn1e/b060jIiKCJ0+e0NG7PYbamqyaMJifK5XL Uj/SY2dViN6tm9C7dZPU1yqXcaZ2z56MHj2KhPh44uLicS5RHCMjI6Kjo3nw6BHx8Qk42dngaGvF y7A39OzRHW/vDnTv0QNnZ+cv7pcg/KhEECwIgiCky8DAgOfPn6NSqZg6ZQrVGzbn1L4dmJkYs//w MRyK2lGubJmPzjt19jwDRo0HYMWKFTRr1ozk5GT8/Px49/YtXbp2RSKR4OLqSp8ePTl4+w5145To /OfDySKJSo5fvMazkFBsChfMsL9JScncuP+Qn5QyrslUnPa/yfCubQGo91NFEhISAGjq3ZXbAfcw NTFm4ID+zJ03n9jYWI4cOYLvhvX8eeYs5ibGDGjXlP7tvJBKv96HpuVKOnJqzTzmrN9G79ZNKG5n zb2gZ0THxaGjpYWTbREKmhqnrD3+IDD4Jev3HqZe7VpYWlnS1acH7dq1S7N5iCAIGRNBsCAIgvBJ EokEiUTCxF9+IS4uDtuyFVOP/VSpAr/NnIZrmdJpzqla0Q2AESNG4OaW8rWamhpNmzZNLRMcHExj T0+GjxhBYMUKHF+1np/i0y4FqIoWT9ShSf+xrJk6Cjdnp3T7+PRlKF3Gz+DOw8eQrMABdV4qkjl0 9jJqZTxYPG4wfdo0xUBPj9dv3/MsOJid86dgoKfL/E1/UN7VhbDXr3Et7oCXR1W2TR6MttbX2xb6 v8o6FcN3xrjU76uX//iNxb8Vs7Zk2gAfJvftwtEL/qzbs53Ro0bSuFEjunXvQc2aNb9q4C4I3wsR BAuCIAgZkkgkzJw1i18mTSIiIoImTRpz8eo1yrnXo31LLzbv3I2+fgF0tHVo1bQRAKYmJhQpUuSj uhQKBRPHjyc5NJxxY8bSb0B/1BUK0ntMxTNZgzMvw6jUrjd2loWQyTTo2rQ++gV0eRn2hsSkJGav 24qBVJ3CSglVkaGOlNoKGeVR4xJy+v+6AJ/mnvy1fyOQsvb27yCxpltZzl6/Q2EzExxtP+5rfqam pkaD6pVoUL0Sb95HsvnAMQb16UVMgpwu3Xzo0qUL1tbWed1NQci3RBAsCIIgZJqOjg46Ojq0btWa a9euA7B5524Atm7dhq6uLidPnGDZ0qV06tw53Tr8/f3Z4Oub8k0SLFuyhFqJHz8QBmCEGk3jIRht jr0KI1mpZPSClehpaRHzYXlDIYk6TZQfP6xmhBpV0SKYWCKiYjA3MQJIM0uqpqaGewWX7A1GPmJq ZMDADi0Z4N2C6/cfsm7PEVzLlsXNrTzduvegadOmOZ7iThC+deLzEkEQBCHL+vXvT8mSJenfrx8K hYLY2FgaNGiARCIhIT4e13LlPplR4u/ZyaK6+jgVMKRydDImqH22PWvU8VHq0osC9KIA3gkadECX lujQRJV+tgYlSraSsmvc3wHw904ikVC+pBOLxw4k+OhWOtaqzKqFc7GyLEz//v24detWXndREPIN MRMsCIIgZJmuri4BAQGp3+vo6ADQskULXoeHs3bpcsJjo9m9ezeNGzdGTe2fINfExASZujrusUrU UZHdW5EuUrRRfvL4euIAOLl2frbq/9Zpa2nSvmFt2jeszdOXoWzYd5h6dWozZdo0evbsldfdE4Q8 J2aCBUEQhByxa9cuXoeHUwVNmsdCMZk2Xl5eqKur89tvv6WWk8lkuJQqTTDJX9TeGRJYRSz+yIlO JxhOQoWWpoyabt/+cocvZWtZkF/6dOHPtfP5dcpkFixYkNddEoQ8J4JgQRCEb1BiYiKD+/ejZFE7 2rVozrNnz/KkH6GhoTx69Ijz58/TokULAIp/2PiiVqI6vShAA7QZOHAgUydNSj1v0vRfua37ZR9G vvwQRF8jkc3EskoSQyBJADwkZUMJ56K2X9TG98bBxorTa+axeME8pk//Na+7Iwh5SgTBgiAI36CR Q4fw6OQhfGs5Y/06EJ8O3oSFhbFo0SJ8OnfCulBBDhw4wOXLlzl58iRxcXE53ofk5GQKFSqEo6Mj Let74izVpAU6yP6z+YU16pRCg4mTJ3Px4kUAbG1tiU5Kynbb71AQhYqlE4aSeOM413esQqahwQkS 2CVL4paGCqlUypWtK77oGr9HNoULcnrNPDatW8PkSb+ku0udIPwIxJpgQRCEb0xYWBgbNmwgoGcD zHW1KWZcAPN5O2nfqgUaYc+pZmXKcBcbmjVtioOFKUY6WgS+i2Kd7yY8PT1zpA+JiYloaqbk0u2J HpIYFSD79AkyGZXLladUqVIsX76cMaNGUSkp+/MwWqTkL7azLIiamhplnYoR63+EdiOnsP3wKQDm juib7fq/d4XNTTm1eh51e4/k+fMXrFq9Oq+7JAi5TswEC4IgfEN2bN9O9UoV6VnOAXPdlKwIujIN PIvbYhIVzp5W1Rn9kzN9KzjxqH9TbnWrw5/tajCreklmTZmcI33YsGEDmpqaFFDXoCt6SNLZ9vjf 7pFIQFIcXl5e7N69mz59+hARFYWjKvvzMDpIMVZJadB7ZJrXfxsziCXjh+BoW0SsBc6AmbEhJ1fP 5cHtGwwaMACl8tMPGQrC90gEwYIgfHNUKhVPnjxJc9NeuXIl+vr6zJo1Kw979nUcPnyYI0eOcPLk Sfr37MGyGk5Mq1EqTZkdzaqwuUkl1P+VA9dKXzd1u91IeRIOJUrkSH80NDTQUVenXbLmR0sf/k2J kuvIOYscJ4eizJs7h84fcgebFtD/4n6U+JBWrUSTTlTx7svc9duIiYund+sm3N+3EdcSDl/cxvfO SL8Ax1bO5v6ta3Tt3Ink5C97WFEQviUiCBYE4ZuzcOFC7O3tMTDQp2vXLnTq1IlevXoRHR1NgwYN 8rp7OUalUjF6xAj6de7A6J5dad64ERsbVaSmbcHU4Daz5AoFihya6WvTpg1xycm8QUkSKgJJIvY/ 2RkSUbJNM5mQQsb06tKBG6ePcu3kYbS1tHBFRpPo9HMIZ0UJNKiMjMJPX5N8J4h5yzZSqlkXSjTp xJgFKwkMfvnFbfwI9PV0ObRkBiGPH9G+bRsSExPzukuCkCtEECwIQr6kUqlwK1+eCm7lOXToUOrr gYGBDBkyhOUzfiHwz4M4mBvh6+tL6dKlUCgUlC5dOlvtbVy/nro1qjF21CgSEhKIjIykT4/u2BQq SJGC5pgaGtCwTi2eP3+eU5eYLpVKxbVr1zh79ixnz55lzrx5nOvwM1c71yZ8aAtq2RfKVr3tS9lx 4oAfHdu2/uJrkEql1KpVi13E4asWzy1jHU7+ZzOyhyQRJZdz/9IZls+bhZaWFs9fhqCtqUlFNNHI gduPFCll0cQJGRXQpGm8Gu3l6hg/DWPW2i04NerwxW38KHS0tdi7cCrx717TwqsZCR924xOE75kI ggVByJcePXrE8+fBjPDxxtPTk4iICMLCwmjapDGLJo+lZ/tWmJuaMLqvD6WKO6JSKrN9446Pj2fY kMF0NpVwbe82KpQtjV0RK5R3LnGkRWVOt67GrW51qaqKpGoFN548eZLDV/uP3+bPo4NXE0Z168ig Tu3pXrEkZropEWZWZ3//zUJPmytd6mAV8oB6Hu4ZZou4ePEiGzduJDY29qNjEomEo0ePsmrVKsqU Ko29rS3xSgUqPs4yMHPRktTsA/EJCbyLjOQtXz4L/CnqHwJjkw+3t7W7DzJizjJmrtlM2Nt3X63d 74GWpoydc35BWymncUPPdH/2gvA9kahEbpRPevHiBbVq1eLEiRNYWVnldXeyLSEhgYCAAJydncXe 8Vkkxi57sjtuSqWSRYsWsWnjRh4/fUoxmyJc3rsZqU3K+ldNTU3G9OvOxEF90pynUqkoVceLCZOn 0K5duyz39/Tp04zu3olz7d2RJyu4GvKGokYFKFRA56Oysy/c44KaEfuPHMtyOxkJDAykomtZHvRu hJG2Zo7X/7fOB64QaWrNuEmT0dDQIDY2FgsLC5ycnJBIJJw5c4ZWTRtTwdKM229jmL94CU2aNEFD Q4Pnz5+zcP58Am7f4cLFi5SIT0ZLJcEBddT+tT44CiVbPmxZfP30EUqVKI6xfUlMY+XUQRPpV56D iUfJJkkcyv/c4t6e24+hvt5Xbftbp1Ao6D5pLo/DIzhw6DD6+l++fvt7JO4P2fP3uBkaGuLp6Zmn MZZIkSYIQr4xc+ZM5s2Zw/yJI0mQyylsYQ5A9P0rJMgTeRcRiYOdzUfnJcjl3H8USPv27WnWrBna 2tpZajcgIAAHw5TASFNdjWrWFp8sO6CiE4uWH+DBgwc4OTllqZ2MvHz5Eltjw68aAAOsrFeeGRfu MaB9a5QqFToydZ6/jyZankgJRwciomOYUaMUncoW5VhQCJ4tW6KrpUXF8m5cveZPsWQpJslKPFHD 4BNp0fSRUgctjpGAVCrl+csQQEU9svazyS5tpPRQ6ZGIEhlSgkjiOAmYVGssAuEMqKmpsWbycAbM +I2f3WsycvQYXFxccHBw+KJPIwQhvxFBsCAI+UJsbCx+fvtxcS6Ot1ejNMd0dXTQ1dHBxMiQ5yGv OHnhCt7NGvL7ngP8ceg4fsdPpZbN6ozMimXL+GXsaLY3q5qp8hpSCcY6WoSFhX1REBwQEMCoIYN5 9/YtS9esxcXFBX//qxQz1M12nZmlqa7GpBqlmfSv11QqFW/i5Fx79ZarIUralrIFoKZtyhsCmwQF Guf9aYE6WkjgQ2aGz7FHA2upgkUr1mBtZYmeJONzcpoMKVeQE6CuhGRoVLMqMg1x68uIVCpl8diB TFyyjjZt2qCtJUNPR5dyZcvgWrES5d0qUK5cOezs7ERgLHyzxF8CQRDy3KlTp2jVsiWa6lKiY+OJ jIrGQL9AmjIPHz+lVZ+h3PnrIQBdh43D0aEYY8eNp5BdMTw9PXF3d8/SDfn69euMHTWSi51rY29U IOMTgLuvI4hHjWrVqqV5PSAggAVzZlPj51qUL1+euLg4/vrrL3R0dKhTpw4FCvxT/59//knbFs3p XMIS+8K61PVwp2rlSly6eIkDratnuv85SSKRYKarRf1iltQvZpn6+v3wSACqIEM9G0sYiiglHDh6 guiYGGrFQ17cdoJJJjFZyePDW7ApXDDX2/9Whbx+w+9+R6lW3J6TozrzKiKG689CuPHQn42njjAg KJg6deuxcfOWvO6qIGSLCIIFQcgzMTEx9PDpxtbtO5g7rA/1fnKjVHMfbgTcx71KxTRlr9y8w8PH T4i+6Mcvyzbw8E0Mu/fuQ11dPTX3bGY8evQI340buHH5MpevXGbWz2UzHQAD2Bnp8TYigjdv3mBu bp76euP69WhnZ8x2//NMfxeNproaxU30eZ+QyLCBCYwaP4HL589y89o13rwOY0UdVzwdUtbBVS1i zq3QdyzzqZf6EFx+ce3VW6QSUFdlbw1vSTR4FRmLWbKSwp/bUe4rqo4me4gnJi4+T9r/Fj1+EUL1 TgMoZ2XOviHeAFga62NprE9j1+IAnH/4jFGH/POym4LwRUQQLAhCrouNjeXmzZv07dOHiDeveXp4 M0UKmtO4/1gAzE1MUKlUaWZ1m9WrxZiZC/j94Amm9O1CCS8fpk6dire3N46Ojhm2GR4eTofWrbh1 8wZtS1rT0swA394N0ZNpZKnv+poyBlcsTpXy5Sjn6kIBA0O8Wrfh3ft3TOrike5M9IGHL9ixeiEu Jnp0q2yHWyE3NNT+CSqLmxpQ3NQgS/3IDS+iYunld+mL6pAipU4iZGb5xNdigToSoEzzbihun8qw /Ldqoe9OJi1bz+l1Czh87gpXR+rSAAAgAElEQVSjfNpnq56AwCd4dB1MnZK2bOrd6pPlzPX1CH/z NrvdFYQ8J4JgQRByVXR0NMbGxiQnJ9PWszYrV05H98ODbG+jYgCo6tWemNg4qldy4+TWtUgkEh4H P+dlaBhqUinaWpocXjqdRZv3UK/Oeh4/fZom+FQqlcyZPZszx47yLPgZIWGvSUpKoms5R/b2a5xm V7XsmFDNmdq25gRHRPIyNJRx/XrxS40yn1yK0dDRioaO316GGbuFuwDoReZnyvMrT7Q5QDx+f15E W1OGTeGCWFmYoaWZN7PTOUWlUnHo3GV2HT/Dut0p+bTLteoBkK0g+Pq9h9TuPpS2FUqypEuTz5Y1 K6DD67ciCBa+XSIIFgQhV23evBktmQZvLvpx4VYAMvV/ZmIvbFyU+vWqPw4w4H+/IZFIeBD0BJf6 LTA1MuAn15R0acXtrFkydgBu7fsxadIk+vbti4mJCbdu3aJHt67cuH0HNTUp3s62HPmwzCAz64WH HbmKVCIhLE5OFUtT+lRI/+G3KlZmVLEyA2BolZJfMiT50qknrwAw/U7SyVuhjo6aOi0GTyBZoaCA rg7RsSm5kosWseT3meOpUKp4Hvcya7YePMHEJWsJeh4CpKzrjl89kefvo3AYPp92I6ZQs4ILvVt/ Ppj928VbATToPZJeNVz5X9v6GZY30NEiQZ6IXC5HU/PrZjQRhK/h+/jrJgjCN6NEiRIolCq6T5nH z92HoVWhPo+evfio3P7TF0hKSiYpKYmGXfpiqK9H2Kk/cLItklpGIpGwY/Z4/rp6nuJOjshkMjzr 12Vgqwbs/+1XSjvYs/H2Y5pvP53pB+YWXfmLxf4PuRmrYODhK5wLDsuxa/8WxCUloz9jM3U3HccA CY1zKaVZbuio0MZHoUMvCtA+Vo36aGGLGkHPX1LLZ0hedy9L4uIT8B49DXlsDCu7NcPFphDXpvRB XV0dOzNjZratx/Yjp+g3bX6m6jt99Sb1e41gaN3KmQqA4cPDlIb6hIeHf8mlCEKeETPBgiDkKhcX F+rVrUOiTMbr169p2rgxF27dw8Em7XKB2cN6c+DsZSbMXczj4Odc27o83frsrQqzZcaYdI95Vq/E mWu38fAZisZUX7RkGmhpaFC5kCEzfi5HKQujdM8L2L2WYtaWDJu7nB4Hj1POzIDfGlTEWCd/PbT2 NdwKew+AuUQNd5Umsu94rsQGDWzQYD9xmFpbZnxCPnHsoj/1e40AoLZzMXqu3QNAuQlLOTuhB5Xs rTh062Fq+d0nzuJVK/2sIyqViuXb9jJy3gome7kzpP5PWeqLmUEBXr9+/U1vKCX8uL7fv26CIORL 69at427APfoNGMiWLVsICnpE81rVPirnZFsEJzsbZi1bw/DOrXEpXixb7dUoXwa5/xF2zpvE0RWz mdy/K7p2Driu9MN4zg6USmVqWaVSibamDD2dlNlPz2oVCQyPYPu9Z/i/+v633E1WKjn7LAxNNTW8 VDoY5eHDbLnJCCmasrxbG/w2IpITl65lunxpB/vUr9efvU6v1k1oVLMKAAqFkkVHL3H6fsrW3qaG +vzud5QLN++mW1eb4ZPpP30hs1rVZtfVAH7dezpLfddQVyMpKSlL5whCfiFmggVByFVWVlYEBgVR s2ZNAIZ1bk0B3Y+3JwbYOWcCl27fp5tXgy9qU11dDa+fUwLtn1xL0b+dF/4Brank3S9NuaY7zqBU qbAwSZkhdncry62dqyjbsgfrbgZSt2jhL+pHfrbl7lM67T4LgNMPdmsIRYF6SGietJ2YlIR5jWYA 3Ni5mtIO9hku3Sloaozi9ikio2MooKuDVCqlZpdBAEze+yftKpVCV1NGIRMjnoe/48TFa+w+cS5N nuSDZy/RuF/KJyi3p/cnVp5Ef18/LgY+55ddJ5jdrn6mZoULGehx7tw5KlWq9CXDIAh5QswEC0I+ olQqCQgIIDIyMsvnfStatGjBsGFDcStVgpATO5jc59M5fksWtf3iAPhTjA3SZjxouPkkhx8+58G+ DalBiJqaGqWK2bF30TSOPH2N1aI93Az9Pp+GH3XMHyvUaIcu7t/ROuDMSNDUoIpLqS+q43noaxb6 7kSlUgEQFRPL6j8OsOfkuc+eFxufkPq1a8vu1Ok+jGeZDMgNCugh/ZDpZFLfLnT1asC9kHC61SxP 5MoJ/DWjP7GrJ1JQP2UXQhPDlDR8N/8KpHG/MRQ2LMCvrepQ0tICSyP9NHWP2HKYo3ceZdiH/zV3 Z/GcmQzs3w+5XJ6pfgtCfiGCYEHIB6Kiohg+bBi2tjbUrFEDS0tLDh06xNsM0g+pVCpmzZyJmpoa 9erW5fz587nU4y/Tu3cfbt5/SER0DNpaefNUeSFTEwDqbjrOtDO3OR/ylqADmyhS0Pyjso1qVCbw wCbex8VTY/3R3O5qrngVE897qQr9H/C2oC6VUqeKW5bPO3T2Mp3HTmf4nKXY1m3D0NlLUC/7M2pl PDCq2ohek+fQYvAEFApFuueHvH5Dtwkz0dHS5NCIzuhpyTh19Qb29duhVsaDYbOXZrovrsUdOH3l JvHpBKIvI6IAMKjsSXRsHOMXrQYgeOFIRjWqAUBhI312DmyHkW7KG6BCRvo4FTTNsF2nQmZcndiD J5fP0KVD9vISC0Je+fH+2glCPvLy5UvatWtH0aJFCX3xjINbfQkPDGDOlIl4enpiYWFBxw4dGDVy JHfu3AHg7NmzDBs6lNmzZtGyRQt+3+TLlROH6NC8CW1at2bUyJFp2oiPj+fIkSOEhubOx73379/H 1saa9evXERMTk26ZEydOkKxQULZld3QqNqDrxNlZbufhsxd0mTCTSt79uHAzIMvn/7172J/Pwpj8 5y12zZ+MreWnt9Q1NTLgyualKJFwL/x9ltvL79xtC6Lx7XygkKMUCgUzVm3K0jmxcfE06jeaTX7H WLx5F7WdixLy26jUTxFmtq1HyG+jAJC51kbmWgu1Mh5M+G0Nmq61USvjQZHarThy7gpD6lWhTqli RKyYQMSK8QxvkLIMYYHvDkyrNUGtjAclGndKs6437O07HBt6U7l9H87436J65wFEREZyd/qAj/o6 plENmrgWx0hPB+s6rTl07jL1yzh8VK5Z+ZI8mTeM2e3q83zBCGzM0n9w9L+MdLXZ2qs5p0+d4u7d 9NceC0J+JIJgQchDsbGxbN26la2rl7FpxRJKlSyBRCKhd7fOqN6H8vLeTSqVKYkkMZ7y5cvj5dWM Nq1boy1VEfI0iOoVXDl3cC8VyrnSsW0r7l44xc6dO2jZogW9evbEw90dHR0d6tevz7ixY3PlmsaN GY3nT25cOHUcl7JlGTduHGFh/6QZW7RoEb179+bwitmc2fAbHRvXZeO+IyQmJn6yTr8zlzCq1oRT V2+mftw8YMZv+O4/hn/AAwKfv8xyP5+8THlTMK6HN0EHNlG7cvkMzyntYI93o9r0PHg1y+3ld7Xs CiLTzNrued+D01I5MYmJWZ4JnrR0PQDBC0YQv2YSh0d2wVxfj6T1U0jeMJVhDaphrq/HmMY10NPS 5Kdi1gBMX7WJZIWCMY1rcGRkF2JXT2Ry81qp9eppafK/tvVpWi4lZ3Ht4jZ0qV6ON+/eUb3TAMYt XMXg//1GYY8WJMTHc+P+Qzy6DSY4JJQ7v/an8H+WNQCMblyTXYO9CV8yBumH359pLeuke116WpoZ rgV+ExXL+jPXSU5OTn1NS6ZBX4/yzJ35P4KCgmjV3Ivnz59nfkAFIQ/8WE8/CEI+4+joSIP69YmK jk73uIW5Gf17+gDwU6WKnLt0hRWzpmFuZpZueUMDAy4e2c+u/QeJT0ig8c/VuXzlCr169mT8hAlf 7Tr+5u/vz+69+3h4YBM2hQqyeMsuRs2ayY3r1zhw8BAXLlxg5MgRzB3RNzXoKFnUltV/HCAiJhZz 4/Sf0N984DhRMXE0HTieEvY2uDk7cvzD0/R1q1Zg9IJVHLt0ja5N61PUqjA2hS0y7GvF0sVR3Dye 5Wt0c3Zi7e5DuKw+RGFtDWRqahx5HEJNawsOd6id5fryi2LG+ryWy9mnJaFRghrSH2CORImSB8pE 2nnWYvWUkRmf8C9DO7dm3sbtrPnzGhOaeXyy3NSWdZj6IeBUKpUEvX6HQyaWGfwxyPuj14ZsOsDm fYfR19HCb1hH6pdJ2S48MTkZmXrmbuevF4/KdB/SM3CjH0tPXAag+5rdFDIsgJ6mDF1NDZq5ObN3 3z6MzS3YuXsPOtrabPh9c7baEYTc8P3/lROEfC4yMhI9Xd0MyzVuUJeZk8d/MgD+m7mZGb27dWZI 315Ex8RStUoV5i9YgImJSU51+ZOWLVsGgGPDDrQdOYVuXp68Pbef4KBAjI2MaNXci3VTRzG4Y6vU c3z3HUFTQwNj/U9vzRsZE0f9ahUJPraDCqWKc/PBY36uVI6/9m/kwNL/0b+9F+8jY+gwZgYlmnZh 3sadX+0auzatx7Wty2nZzBNdW3uSzQuRrFCi/DDD9q1qUKwwvl7VeJWQQHLGxb8rWw6eICkpa1dd 0NQYO8tC/LrvT4oMncuJgKAMz5FKpdkOPgHmd2jI4zlDuDmlT2oADGQ6AM6JPiw9cZli9nbMnzEV AI0CBjwKe8vN4FAm7TrB+6hoVi9fxo4BbTl+9AizZ89m+/btHDx4kKdPn6Z+kiMI+YGYCRaEPCaX y/nz/EXqeNTM0XpVKhXzl61k2IiszXB9iaVLl7Jy5UoCAwPxcHfHqGojdi+cxpXNS3n5Ohx7q8If pX8aMmsxE3t3Qv0zN/LA5y+RaWhgqK/H4nGDPzo+tkfH1K/P+N/Cs+8o6lQplyafak6RaWjgUrxY mrzFVnXaUMe+UI63lZt0ZRr4PUpZVhKJErMfYI5EihQXNLhJEsUbdyTo8JZMnyuRSAg8tJlX4W+x qtWS8TuPU8u56Ffsbd57HZWyxt+ycCEG9+3F4L690hzf9sceegwcSlRMDAuOXGRn31asPLiTK4nJ RMbLuRMcQtFixTh78XKmd3AUhK/p+/8rJwj5XHtvb36du4CFy1flaL37Dh3h6vUbtGzVKuPCOURT UxM1NTVsbGxYvWYNAG8iItHSlFG0iGW6Nz49HR3cy5f9bL3WhSy4F/SUyt59iYtL+GzZciUdiE+Q 4/fnpexfSBYkyBN5Ff4WZ3ND4NtKV/df2+6mbLBg9gPNj1RCCx0kPA0J/WQWh88pZGaCkb4eVx+/ YPjmQ9x7+f1ts52QmIjTqEUUHjATgM7t2qRbrk2LZkS9fMy1P4/zRqmO+4y1XHjwhKlNq3NocFs2 dm/Gg0eBudl1QfgsEQQLQh7r0qULpUqVYv3mbTlar/+NWxgaGqKmlru7fsXGxrJ7926GDRlCq3oe dPPyTD2mUCi4cf8RV+/+xYWbd5m4eC3vo6I5ctH/s3UeWzGLJ4d+5+qd+9TrPfyzZZ0adUKmoc5o n3Y5cj0ZefziFQBNt56i/Mr9aP76Ox33fBup6v7rZKe6AGxSi0PJtxvMZ5U3OkgkEqp27J+tNzG3 d61jRNd2LDhygTJjF+OzetdX6GXuexb+nk7Ld2DYZzqxSglnDu1DFfmarh3S/m79d8zKuZTB3MwM J8diPHwVTsVJK7gdHIr3yt1s3/mHmAUW8o0f5+2+IORTxsbGODo44H81ZzMOGBkaYGNjnaN1ZkaX Th25dOE8EVHReFZ2AeDohaucuHSd1X/4gUSCmlRKsiIZZ3tbalUqR1OPqhnWa13IAgM9XWq4fXrW +PDZy7x++47Ta+fn2o22hL01kRf2M3fDdqas8KVLs/ps3HeUhXXLY6yjlSt9yCnVbSy41N2TyqsP cpAEGpH+Tn7fGylSWqq02XH3Ly7eCuAn19JZOr+QmQkzBvfAq1Y1qnbox4azNwiNiObA8E9vBJOf 9Vi7h93XHxARHUNBczO6d+rA3F8no6Pz8b+HnoOGsmp9Snq5uj+7ExkVxcuQV7wISXlzqKGhQdvK pZl37DKjx0/Aw+PTDxEKQm4TQbAg5JG7d++y648/0NfX58HDhzSsl7OZBS5evUa/vv0yLpiDTp48 yc5du7m2dTlKlZKaXYey99Q53ryPpKxTUeYN70PnpvWyVXdUTCwx8fEM8m6Z7vEHT57TZsRk+rRp gkvx3FubKZFI0NPR5k5gylKCJeOGsH7PYaaeu8v8ulnfgCGvlbVIyQ2rLpHAD/QM09MPjwO6OBXL oGRaI+YsY97G7R+9vqFn+v9O86Mhmw6w7NRVdDQ1SUxORktLi9/mzsTayorqVSt/9IbyydNn2Jet wE9VKnH+4uXU1+8/fIRUKk0NgIuaG3N/5iCkUinDtx3l7ZvwXL0uQciICIIFIQ/I5XJcXFzo1LYV amrqdPduQ/8e3XKs/pBXoezcu5+O3bqjVCpTt1bNjuTkZN6+fYuhoSGamp/e3e3+/fvUqlULdTU1 yrftTQk7a6YP9OHGX49YOnYwWlrppz/LrE1+xylS0AJzk/QT+E9etg6PCi4sGv3xZgFf28Gzl9l9 4hzHV89FS1PGkZVzaDVk4jcZBEs/BDzlVT9WzmAXNAiQgX7llOU7+ro63N2zHkuLj7OxqFQqbOu1 4VX4WxQKJQW0tYj+sP1x3JpfspStIT9Yc+YG5mZmdGnXhviEBGZOmYiGRvo//+s3b1O+Zsob9n8H wADTJo6nc88+lLYpzNJODalS7J9Porr+VJYGi9YwddqvX/T3SBBy0rf1myoI3ziVSsWLFy84d+4c 5V3Lsnbxgq/SjpqaGr27dmbMqJEMGNCfSb9MokbNmvjt38+aNWswMDBg1erVFC9ePM15CoUClUrF yhUruHTpElKplG3btpIgT8Tezha/AwcpUaLER+csX76MkSNGUrdqBUrY22Bpbsqo+St4/T6CtVnM v6pSqTh55QZWFmY42RZJff3xy1fYfib/74Onz2nqnvGyiq9BU6aBmZEhHhXLAVCjfBmi4+K/+A1I XjgX/BqA2yRR6we6RUiRwr/Sd0XFxqGj/fFyFv+AB1Rq1xtImens8JMLE5p5fJM/678ZasuwsbLk 11/GZVj27wB40ZyZ2Nna0LhlW6RSKUqlks49+wAQFPrmoy2Xna0skKqUPH36FHv7nM/aIgjZ8eP8 hROEPLZ3716aNWuGlpYWmpoydq5f/dXasjA3Y9m8mahUKo6fPoNXx27ExcXRvHFDxg7uT9CTp/Tt 04eTp06lnrN/3z5atGyJQqHAyrIw/bt3RVNTky1KJd2be5KUrMDZ2ZlCBS3Q0dbG0MiIyKgooiIj CXsdzp5Fv9L4X0FoVddS1PYZyqiubdBLZy3hp7x8/Ya6vVICZ7/F0zl99Ra62prM992JR0XXT55X w60s+/+8yMTenbIxYl/G3a0s4e8jOHHpGrUql0dDXR2VSsWciwGM/Clr60vzWu8DKVk1vs1w7stI PuQKjvM/gqYs/U8unIvaAtDcrSTbB/zzgNi3GgADhEREU8bAIEvnDOiTkh5tzPAhLFiyjPj4f7K2 xMkTqTx5BQ9nD0lzjq25CcHBwSIIFvKNLP3WyuVyGjZsyJkzZ1JfCwwMxMfHBzc3N2rWrMnMmTOR y+Wpx2fMmIGTk1Oa/6ZMmZJ6/NGjR7Rv356yZcvSqFEjzp07l6bNr31cEHLLy5cv6erdlvhXT3n/ 5AG13Wt89TYlEgl1PGoS8yII5btX7NywmrYtmtHUsx6nTp9mk68vZ86cYeiQIXTt1pXdvmu5cuIQ ARf+ZMTAfgzs1Z02Xs3YuP8oG/Yd4dnhLeyYOZZlo/siSYjl0aNA/BZNQ3H7VJoAGKBKWWeK21sz 8H+Ls9Tn+AQ5utpaaMo0aNR/LKf9b7L39EU6Nq7LrKG9P3nes5dhlPwQoOQ2NTU1alUqx9DZSzl/ 4w5NBqRsUX3icWie9OdL+LX7mU5lixIkURD2g22bUZmU5T6yTywFANDWSikTFS//ZJn8KDk5mcTk j3+ep+8/BqBH5w4Z1hH6r+3PJ0yZhkTXkBlz5mP4nwDaw7ko2/u3/eh8Uz0dLl3KndSFgpAZmZ4J jo+PZ8iQIQQG/pPjLzY2lh49elChQgW2bdtGeHg448aNQ6FQMHZsyk0gMDCQvn370r59+9TztLW1 AUhISKB79+54eHgwdepUDh8+TL9+/fDz86NIkSJf/bgg5CYDAwMS5IkAeZ4iqFTJEiyaOY2OnTpR qGBBunm35cTuHZQt7fxR2Y0rFrN+2SJM7YtToX0fLm1ajHUhC9wruqChoUG5ko7ptJCyTOJV+Ds6 NMzaA38R0TEkJSezZ9GvOBezwyqdNZnpufUgkF8H+mSprZy0ZOxAijftQo3OA9HWSElLN6hyiQzO yn/sjQpgb6yPQqXiHUoy3oD6+xH3IS3cp34/V+zYR/9pKUuY1vZonmv9+hKn7j1myfFL7Ll2HwAr MxM29WhGZHwCPmv28j42Hj1dXZo2bPDZes5fukK1eo3Q0dZm0dyZqElT/o0XtDAn7HU4EokELXU1 olf/8sk6ajtZM2PhAgYNGpQaBwhCXsrUTPDdu3dp2bIlr169SvP6xYsXiY6OZtq0aRQtWpTKlSsz aNAg9u3bl1omKCgIZ2dnzMzMUv/T09MD4PDhwygUCsaPH0/RokXp168fZcqUYdu2bblyXBByk6am JgkJ+Wf2qEXjRsyeMpHgO/5MGz863QD4b1KplNeB97C3t8eugTcb9x9lxQ4/Cpubcsb/FjFx8UBK 4Hvk/BXOXb/D1sMniUtIYEjHzz8lH58g59Lte2w/cpr1e48Q9i4CAz09PPuM4unLjGdSlUolHUZP I/TNO+pULpe1QcgBT1+G0mHMdIo37QLAxunjSFRCURN9jgaF5Hp/csKkUzcAKMHHSwLCv+PZ4Qc6 6ozr2THdYyqVir5T51NAS8a0lrUpbKSfy72DEwFB1J+1Htshs7EbOpc6M9ex9MRloj5sIPMuJo6f p6/BoPevmPadjuWQlDIXgsPZv20Trx7ewcnZGffpa2g6/3cMTU25ee4k0SFPMswn3rJTyoO7cfHx TJkxi669UzLPhIa9RqlUUt3R5rMBMEDvnytQt4QtpUsUZ+uWzO/OJwhfS6Zmgi9fvkzt2rXp06cP Zcv+k6OzdOnSLFmyBNm/1k5JJBISExNRqVTExcURGhqKnZ1duvVev36dcuXKpdkutUKFCly5ciVX jgtCbnj8+DH6+vrcvHEDy0L5Z16tcKGCDB/QN9Pl1dXVOb5nB56tvZmxfgdKpZKDZy5y7MJVYuMT MDM2RJ6YREJiIloyGRIJ9GvT9LN1Pnn5imINO2JmZIh+AV1kGhrExsejpSnD0aYI2pofB2Gz1m5h 5c796OnooKutSfCr1xTQ0ebqlmWYGGZtXWNWvHkfydOQUNycndK83mXiLG7ef8TyiUOpXdkNO6tC VCxdnKGzl7DkzCW2PQxhYpUS9Kng9Ima849kpZJTT1LeeFRKJwD+i0SuSBLppNLL7a59deEk8y4u nr0nz6Gjpcmwzm3Q0Pjn3vH3hhAjG9VgVKOvv5Tp37qv3s36s9cB0NPTJSYmFjsba57GJjNwox8D N/qlKT9rykTC37zFpUwpmjVskCa/77E9O3gdHo62ljb6+gUy3YeIiEgAtDXUGVO7HE9e2zHrwFkA 3iwdi6Fu5mZ2V3ZuyLmHz2jk40OTpk3TzT0sCLklU0Gwj0/6HzFaWFhgYfHPTV2hUODr60v58uWR SCQEBQWhUqlYv349Z8+eRUdHhxYtWtC1a9eUmaXXr7GyskpTp6mpKaGhKX+Ev/bxzJLL5SQkfH6r 1vzs7zXa/16rLWTOl47dlMmTmfG//6GtrY22lhb7t2zMye7lOh0dHU777U793rZ0eSo5OzCofXNe vX3H+8homteqjqG+Hmev32HXibP4+h3DraQjDtZWqKunnW2yLVyQIgXNaVGnBnNHZC6n8bWAB0TF xDK8c2veRURR2NyUtvU90EonYM4pbyMisfBoAUCjGpUZ37MDsfEJLNuxnyu377Nxxlha1nVPLe9g Y8X+xTOQJyayZtcBRs5djo9r0XydOissJh6r+TtTvy+QzgeFxZFRTJV/r+FLmCDFDRnBgc+Ysmw9 527cYf/iGalLI5IVCnS1tbDQz903AMnJyVx78hKAsMAAzM0+Xh50/8FDDh07QcumjbEuYvXR8Y2b t6Gvr88a39/xXbEYC3PzLPVBoVCQIJezd4g3DV3+ySgzvXXdLF5NykRZdSdbpBKIior6ph8oFPfW 7Pl7vBITE/O4JzmcHWLq1Kn89ddfbN+ekjg8KCgIqVSKpaUlK1as4O7du0yfPh2FQkHPnj2Jj4// KO+oTCZLHZivfTyzHj16RERERJbOyY/+vZ5byJrsjJ1CoWDvvn3Uq+XB4Z3f50d/s6b8Qrf+gwl+ 9ZrjK2enPjT09GUo7t1SngxXk0pRqVQoVSrC/9yFscE/HyNHx8YRl5CAiWHmP1p2KeFA8Kswerdq nLMX8wmhb95Rv88o1KRSdsybTJdxM6jcoT+G+nqUdSzGpS3LKOOY/uYcmjIZfdo0Y8D0RdT2PU65 QsbMq+uWL2/85rpaNC1uzft4OWeehXGcBM4hpzNpgz717zRvhBQp5dGkPJqEJSVz5MoNKrfvw875 U5BKJLQdMYXk5GQ6VXPJ1X6VnbCcByFheFT/Kd0AGKCEkyMlnD5emx/w11+UqlQjNYUZwLhpMzA3 NWXEwH6ZnoUNfv4CIE0A/CVO3nuMgb4+L1684OXLlzlSZ14S99bsefbsWV53IWeCYIVCweTJk/nj jz9YuHBhau7RZs2a4e7ujpFRSnJ7JycnIiIi8PX1pWfPnv9n7y7Dm8i6AI7/k6apu7tAgUJxWNzd 3d11cWexxWVx18Li7k5xd4pD0VKHelOJvB/K8i5LoULSFJjf8/BhM5M7J902Oblz7zno6+t/kZAm Jyd/WjCv6eMZ5eXlhc055wIAACAASURBVJOTU6aek5MkJSXx/PlzcufO/c1mB4Ivfc/PLiEhgYcP H7J4xp/pn/yDatmkIfm8clOzaQuMS9djVLe2TP29K+YmqYnThb8XU6ZwAeISEjAvU5/YeNmnJFgu V7B8xwEsTE0Z0yPtdZhpcXe0J+LjrdnssOWIH/7PXnJ96wqK5c9D5OVD3HsaQD53l8+Wgn2NSCSi UdXyHDl/hcuB4ZR2sqF1wbSXiGmTSCRiZ4tKAFwPiqDhFj8iEn7NGS47JLROErPx4TPq9R3Fg4/d ABe0r5ftX2CeBIXSqU0rfJcvyvRznezt0dOTkidXLi6dPsGAoSNYumodABOnzyb67XNMTdP/AvrP bPjL8A942FhmOo5/u/cmhC5r9rFk1Rp8fHy+ayxtEz5bs+afn5ubm5u2Q/n+JDglJYVhw4bh5+fH woULqVat2qdjIpHoUwL8j9y5cxMeHo5KpcLOzo7w8M/bKIaHh2P78VaNpo9nlJ6eHvr6XxZN/9H8 LK9DGzL7s1OpVISGhmJsbEx8fIIGI9O+Qj75CXn6gEZtO/I2JLXRQmBY6t+dl2vql0djQ0Psbazw rNuOXXMnERkTS/eJcwDYOS9zXxL0dHV5ERic/olq0qF+DYb9tZzmQybw4mjqjP7XZn6/Zvf8yQB0 GjudrQ8e5sgk+N9KOlozp0YJhh2/ATJtR6MdUsToS3V58PwlztYWvJg9SGsz+FJp1rr3mZubM7R/ X5at8cXY2Ji1K5YyoG9vrK2tcMlTADOX3NjZ2pCQIKN/z25M+0qzjPVbUjeT25lkfimI77lb7Lr9 hGehH0iWK0hSKJk5+y8aNW6cpdeUEwmfrVmTkUkETfvuv+jx48dz9uxZVqxY8VkCDDBv3jzatWv3 2WMPHz7Ew8MDkUhE0aJFuX37NgqF4tPxGzduUKxY6g5vTR8XCDRBJpORO3du3N3dad+iGbWrV9V2 SNkiNi6OTYdOssfvAiPmrsDZzuazjWovDm+iY8NaDJq1hD8Wr+Xv6WO5uX0VTapVyNR1/j54HICr /o/UGv9/PXsdyO/TF5G/SRcgdQb6e+Vxc+ZhZNx3j5Md3MyNiZAlofxYNuxXVCopdQa0hKu9VhLg FX7XAWjWsH6WxyhWpBCRUVFERLwHoEjhQjg7OfHq0T3q16mFSCQmNi6ODVu3f3WMoOAQrE2NMcxk 6/PtV/3p+/dB6nTuzcFTZzh96QqBwSF06tw5y69HIFCn7/qrPnv2LLt372b48OF4eXkRHh7+6R9A 1apVuX37NkuWLOHNmzfs27ePVatW0atXaqeZmjVrolAomDBhAgEBASxdupT79+/TokWLbDkuEKhb QkIClSpWpHghH+ICA1g2d+Zn1UnSc/7SFV6/eavBCDWnRuVKeLq5MmL+ai7efkBgaDhd/phBwsdO UlKplHVTRvHq+DYCT+2kafWK5HV3QfWvVrUZsWjMQIwM9JmycmOax+NlMiJjYrP8OhJkibQfM53C zXtw/rY/Y3p04PWJ7fitnZflMf9x90kABSx/jMoKpZxS296uJ57kXzQRzoUuVdDn6N2n2Xpdh99n Ytt/BsO3HWdo/97U+o4v0s0a1kdXV5eNWz8vDerm6sqBndsIfvGEWxfP8i4omLI16n5Klv/t7bsg 4hIzt5fmasBbBm45zrVr1/n999/Jmzcvnp6emXo/FAg07buS4CNHjgDw559/Ur58+c/+JSUlUbhw YRYtWsSJEyeoX78+ixYtYvjw4TRokLqhxcjIiFWrVvHkyRMaN27MkSNHWLJkyaeKDpo+LhCo29On TwkLC2Xb2hUYGRll+HkqlYqFK1ZTsV5j3AuXpELdxmzctjP9J+Ygo4cMJODONQLu3iA26CWPr13g 9I275Knfnurdh+JesxU1egylaPPuSApXxahkLYx/q82Q2UszdR1nOxtGdW/L9QdP2HniHLPXbaPT HzMp1Lw7luUbYVm+MQ5VW2BXpRkNB/zBvtMXMzX+Xxt24Hf1Fv5713Fn5xoGdWie4YYd36JQKDhw 5iKV3HJOmbxv0dUR83eT8iQDD0nRdjha44mEZIUC33O3su2a4TFxfIiNRyQWM2vyxCyP8/vw0Vh7 5CUlJQULc/Ovnle0SGH+/GMM/g8f41WsFAuWrQRSK1NMnT2PKhXKk5iJDeWR8TJaLtvJat/1n5VV FQhyGpEqs9Mwv5DAwECqVavGqVOnfujEOTExkQcPHlCgQAFh3VImZfZnd/HiRfr06sm9C34oFIo0 C9DL5XISEmS8evOWY36nOXvpCvEJCYSERbB5yxYSEhKYM2cOe/fupXiRwuxavxo31x+zw6FcLmft xi3cvuePVy5Pnj4PwN3Vlb7dOmFqakqhspXxf/SYOzvXUDCPZ4bHvf/sBVW6DsbC1ARLMxM8nR0o V7QgZQoXoNDHcU5evsnfB4+z99R5ws7uxugrG2LjEmRsOeLH66BQLtz256r/Y3bN/5O6FUqr5WcA qV9y6vUbxbU79wn8vVGOLpX2bykKJYbTNlEHA1zVW0zoh3KZRO6RQu1CXuwf3F7jSyNGbDnK3KOp X95U0WFZHkdkZkvjBvXYsGo5Jibp1wRWqVTs3LOP3gMGoyvRITEpCWsrKxITkwgNDyd2+Rh0v9FS +h8T9pwmzMqdlavXZDn2H4Hw2Zo1//zczM3NqVu3rlZzrF/3XU0g0IDFixZR7rcSuPgUI/BdED75 vWnXvCkvXr/m9dt33Lxzl/cfPnw6v1rVqvTr35+UlBQaNmz46Y00f/78tG/fnnHjxrF41VpmT/52 J6acSiKR0LPz1ys/LJw1jVZdelCkeTdWTRxO16Z1MzSuj5cn4ef3ffOc2hVKUbtCKTxqt2bLkdN0 /8rY3Sf9xdnrd8jl4oiHsyNzR/T/aivorBoxdwVnr90meHDTHyYBhtTZYAt9KU8SU37pJLgoepgg 5ui9Z6w9d4vulUto9HozWtVk7tGLTBs/lsvXrhMe8Z4GdWplqt160/adAWjZtEmGEmBI3czeomlj ypcpzc07d3BycKBwoYKIxWIkppbEJ8sxz0ASfOLxa2YuG5fhWAUCbfl139UEAg0IDw9nq58fDRrU 5/iJkwQHB7Nk8WI8PDzoVLMOU7y8yJcvH/r6+ujo6Hx1RsnCwoJmzZoRExPDlr9/7AYb31K5fFmC n/jj6lOM6w8eZzgJzoxxPTswZPZSapYpjut/Ova9C43gwJlLPDu0CUdba7Vf+x/vo6IpYWeBcQ7Y DZ0ZKQolkYnJlOTXnuXSR4QPUgJ1VFx5/lbjSbBYLKZSPnfG/Dn102PL5s6id7fOGXq+39nznDh9 jmf3bpE7V8bvsPzDwcGe+g61P/23SqVCoVCizMCN47jEJB68DqJUqVKZvq5AkN2EJFggUKNt27eT lJSEo6MjAN7e3lStmvVNLW/fvOHE6TMcPn6SujWrqyvMHEUsFoNKyd5T57EwNeGPHh0wNFRf0tW1 aT0Onr1MxS6DOblyNrld/1/z+9HL11iZmWo0AT5x+Qbbj51mWW3NJk6aEJ2Uug40DAUeZK1M18/E XCXG9/wtlnduoPENXseGd6LTyt2MblCJzZfv0mfICNq3ao6x8bc3VkZFRdF78DAa1K6ZpQQ4LVev 3wDAPAN/l1cDAilcIH+m6/ELBNrwc7b+EQi0xMrK6lMCrA4jR42ibt26dB84TG1j5kR7Nq4nSa5k 5prNmJSuw0s11wHevWAKZYv44NO0KzpFqlOj53CWbd/Pmj1HMMzkh7VKpaJAo07sz+CGu6ev3mJh oE+7gupJSLKTtaE+VgZ63CGFgH9tjktByatfcLOct1IHHciWCgcSiYRNfVty500wy05fz9Dv6ZhJ U7Fwy0NkVAwjhw5WWyyhYWGYGhtlaC305edvKVuxktquLRBokpAECwQ52PPnzzl8+DAzv1LE/meQ nJxM45btMElMZIOrE8WNDOkxfpbar7N51jgSbhxnxYRhPA8MYtrqzRw+f5VWtatkapzFW/bw+OUb 2gz/k2FzluK77yiHz1/B/+mLz85TqVSs23uEAdMXYmnw43aTCh7aAh2RiCBS662HIWct8RwjUcuR ZT8FqcsBAj9kT8fC/usP0HnlLooWLcqr+zfTnQVeujq1G1z4mwAKFyqotjj27D+IaQZqBMsVCnbe ekL1mjXVdm2BQJOE5RACQQ6iUqmIjo7m8OHDREVGEhQUBECDOj/vh0qvQcOIiYriWh4P9MRiXKS6 1Ll1lzPX71C5ZBG1XkssFtO9WT26N6uXpefHxicwbtEadrSoSEKKghVnznHk5BnexycSHh2L4t5p AELff2DQzMVsP3qa35ysOdu5hjpfRraKS5ajUKl4LlbwSBnLP6tCv6x78vOzRAcHsS4N/9rIran9 NH69S8/fAHD28Lc3gf5jzZL5NO/Qlbi4uHQT5oxKSkpi/aYtLOnU8JvnxcgSGbDpKI6euakpJMGC H4SQBAsEOcSNGzcoWbIkRkZGuDg54unuRnxCAoEPbmNuZpb+AD+oHTv30MPKnCdJydyRJSIRidBB RPiHSG2H9oVr/o8wkEponC+1533bj0sc/r4bwORbL7nz+DlLtuxh7Z7DiEUiDretRo1c6lseow0m erosq1ea9wmJFLa3JDhORs8Dl/mNH2uTn7roIcLGNOM1wL/HmdHdsOwzlZevXuPh7pbu+Y3qpm5m e/nqNQV9CqglBrFYjIGBASFRMV8958rzt7RduZsadeqzc+HCTFWxEAi0SUiCBYIcIi4utZ3upaMH KOSTX8vRpE+hUCAWi7/7A8/c1IQVEZGsfh+FUiTCUKpLnw7NaVErc8sUssPDgFfEyZK+eNxET8LL wGDKtO2DrYkhNTwd2N2qMvo/UDm0b+lezAuA869D6XngMlaIKcSPu8Qjs1SoiEBJBApeKVM41aNJ tlzX1FAfMyNDduzdz4hBv6d7fszHTolOatyXsNp3AzKZjNZlCqV5/GrAW5os3s6qdb40atRIbdcV CLLDz/EOLRD8BCpXrky9unW5de9ejk6CVSoVB4+eoE333kgkOtjZ2GBtbYVCrmDBjCmUKlEsQ+PE x8fTud8gIhNk5DE14XV8Ai0a12b5+KEafgWZExkTy4i/loMINh44wabGZb44p2EeF2ZUK0a/3/L+ NInvfylVKjrvu4gTOtTHUNvhZKvLOnKeKJMxN9RndLVKOFtm350ZFfDkeUCGzg0MCkIsEqGjo77t PklJSThaWZDXIe2uiXNPXGfy9BlCAiz4If2c79YCwQ/o3r17XLl6hfWL5mg7lC9cu3mLRSvXYmJi zLbde5Enp9DP2AA3qS4R8bGERkfil5BI6RqpdX5ze3jw/OVLACqVK0NsbByWlhb4LlmAo4M9m7bv YviEPzFOTOKiiz2mEgmlX7+jcN7c2nyZX/C7eovGA8aSx9IUNxM9ehbN9WkpxL+JxWKGllXP7eec KiFFzpvoeJrya5W+SkSFvyKRqxN6U9zTKf0nqNmcVjXpuXYzE0YOw9Xl2121Rk6YjFKlUmv3sjt3 75HHNu2WyyqViusvAplWJefdtREIMkJIggUCLZPL5Tx58oSyZcvSrEE9rCwttR3SZyLev6d0jXqo VCpKmRozzdSYanZWX5RLGgqcj43ncoIMz6R4nN2cWBr+Acv79zFUqjh+/wFuhUqgUCgwMTSki6E+ A51sARgQFIZMpaJuhZxVYH/W2i20yOPEqoZltR2KVj19H0OBpfswlOhgI/91PjaekYIfiRjqSrSS AENqwxIgQ/sC1i9fhF3uAtRv1ooTB/d+97Xfv/+A37nzdCmRN83jx+8/x8jUFC8vr+++lkCgDb/O u5lAkAPExMRw/fp1zM3NOXLkCFOmTEFHRweFQsGUsSPp07XTd19DoVAwaeYckpNTeBsURGRkFCFh YehJ9dizcR32drYZHuve/YfUaNqS4pYWbLOzSvf8CiZGVDD5/6ah0kaf3zY/HxtPgkpJFWMjIhVK poWEE5iSwiW5ggVjBuLmaJ/xF/ofb4JDCQp7T+nC6llK8joohAu3/XnYK2uVJH50m/1fEBAZx7YH r3gSEY1EJKKd/NfpHCdDid/HMnAnRnXVSgzzj15i2JYjLJs7C1PT9Fsf29rYsHvjOtp2683de/7f XSZt7MQ/USUmMKZBhS+OnXoQQNe1B1i9foOwEU7wwxKSYIEgm7x69YoaNapjY2lJ+Pv3SHV1Gdir O4P79iI5OTndW50ZlZAgY/LseQDUMzXGUkdMMamUqaERlKhSk997dsPayormDetjZmZK4Lsg5Ao5 7q6uqFQqkpOTOXvxMhevXmfxqrVUVSmY6WiXzlUzpoKJETNCwxkdEUlMUjLlihYkj5szy0sXz3S9 Xki9HXv57gMOn7vCos27iUuQMbFvF/q0aoS1xfet25z3905yWZrhnE2VANQpODaBtrvP42JmzMr6 pdGXZL6g2fwrj7gd8gEDsZg2GGGq+rXKyhsgpjhSbpLMhN2nODqic7bHMH7vaYoXKZzhdskATRrU o3aNaowaN5Ej+3Zl+dpnz19gxVpfzozp9kVzkOsvAumwZh9bduz8ro6YAoG2CUmwQJBNNv79N6ZG Rlw6dkCj1zExSa0PmtvIkIXODp8el4pEXImLY9P8hcSIdegxYAgSXQkpKXKkurq4OjsREhZOXHw8 VmamWAB99KV0tVJPS+EIuZymQWG8i4unZ4sGjOrWNsMzvyqVitdBobwNCUOWlERScgqypCSWbt3L rQdPMReLaKmvRxELMyb5bmXi0nXIbh5Hqpu1Vr9vQ8JYuWM/N7rWydLz/3EvNBK5Ukkxh/Rn0dVF qVLhOv+f5CeMLf6pTTwGlc7PlCpF0MtgQjylalE67blIM9mv2y7Z52MSLEvRTne86c2qMXDjIYwd 3bly8gg++b1RqVSIRCIOHz/J/KUrGD1kIFUqlv/seWsWzcMlfxECXrwkl6dHpq97/eYt6jZpQduy hSmf1/2L4/cDQ6lbu46QAAt+eEISLBBkkwEDBzJu/HjCIyKwsVZPYvk1HVq14Nbe/Z891t7SnPaW /9/gEmRlTpRCgYWODmYSHfZFxaBnZkxlJ1ss1VzhQKlU0iIkAm+ffNyaOS5Ds7T3ngaw/dgZzt24 y+1HzxABxnpSdEQiJCIRYiCvQsEFVwdM/xVvFRMjCj4OoFz7fhxcOgM7q8yvsT564Rpulmbks8n4 bPLdkA8sv/UMI10J7maps8dDj98A4Fr3uhS21/xa7/thkSy/8RSAXeP7UcTThYNX77Lj3A18770g MDYB34ZlM5QIl3OxQUdHxFlxEpWUv045tH8LQQ7A2u5NtXL9fjVKU9TNke5r91KiUg1cnB0JePka W2srQsMjADhx+iyN6tZmx4Y1KBQK9PX1sbS0wNrSghu3bmc6Cf578xY69uhDt8olWNEl7YoPwdFx mDmo586VQKBNQhIsEGQTU1NTenTvzvxlq5g6brRGrvH0eQDL165n2+69tDT+9i5+R6kujvx/lq+N Zdo7wNVh9YcolAb6HFgyPcOzs757j7Jg4076Wlsw1tGWvPoZS8QMxWIGWFuy8NEzirXogf+edVia mX7zOSkpcnR1U98OQ99/4M9lvrT1ytz65DJrjuBub427vQ27rj/F3NiQOT1acuTGfUaeus3RdtUy NV5mqVQqSqw6hEKpQl9XQqMyRQHo17Aa/RpWIzD8A+4dR6ArFrGhcfl0RgMjqS7rGpalw54LINNo 6DlSCqpPraE9bCy0FkfZPK48nDGAt++jOHTnCXlbVGG53zW6dapLVW8P9t56TNc1+zC0c0WuULB5 zXLaNG9KzWpVmLtwMa2aZyyBV6lUrFzrS//Bw1jTvQmdKny91OHu28+Y3/8Pdb1EgUBrfq1FXgKB lpUqXRr/R481MnZYeDh5S5bj6IaNzLW1YpKDetbxZpVSqSQ4OQXf95GsjpcxrHOrTC1PmNy/K15u zpxTKDOcAP9joK0Vj/LlQh6fwLwNOz49rlKp6P3nXMzL1OPg2cuoVCqaDR6PYclayOUKFm/eTeGm 3fAy1mN6tYzVO/6Hl5Up3q4OHJk6mFeb/uLOiskMaFKDbrUrcOlNKE/ff73jFsDb6HgeR0Rn6pr/ 9igiGiNdXZIPrSRu//IvjjvbpM5EN/dOv/PYPyITk5ErVShRZjmuH4UcFS9I4SpJHEXGWlKb1yzu WP+LSija4GJlTu9qpaiS35Nt/VtTs6AXEomE5r/5ELVsNFOaV6OUlxuDRv3Bm7eB1KlRjQePHnPu wsVvjvs2MJClK1dj7+FF/8HDWNyx/jcT4IDQDwRFxVK+fPpfpASCnE6YCRYIspFMJiMyKkojY5+9 eBmANY522Olq7087UamkQ3A4t6JTk75cLk60aVSRPq0aZ2ocI0MDbmxbiUPlptyXJeJjkLnKBFKx mKHmpkzZuBOproTyxQqx++Q5dh45hUWKnCVb9nDr0VPOXrmJlaEBZmXqIhaJSEhM4njfzFeEGFmu AD0PXOFt2HtcbP+/Brh5hRIcvHqHEisPEja81Web1N5Ex2NlIKX9ngscfBoIQDlXO051qI5OJhOv Ey+CcbW3/mbCZmNiiFyZ8YS2Tm4n4lNSiEeX9GsT5FzxKHmFHEvE2KHDS+S4ISEZFRd15LxQfN4F MI+dFQtrlaF3lZI5IgFOj1gsZljdCgypXY7qs9bj5lMMcxNjEpOSaN2pGx3btkIqlTJhzCh0dP7/ +7d5+w669OqHtZkJ1b1cmNumO9bpbATdetWfxo0bfzaOQPCjEpJggSAbHT92jJpVKmlk7H+S4O2R 0fxum30bsf6hVCrpHxrB1RQ5Bbw8CZ0/GStz0+8qn2RsaEAxby9OvA3MdBIM0NLCjOcKBavXb2fO uq2Y6knpa2xILRMj2tx7yPFL19ni5kQJA31uyhLZGRXNzsSkLCU+rX086H3wCgOXbWb3hM9b3PoO 687GU1fwD4ukpGPqevDAmHhyLdz96ZwpnZoyqGl13NsNY+WtZ/RJozbr+4Qkpl/wZ8n1xwQMaIqj SWoJurB4GctvPKVBpW/XWW5cvgStdp7jYtc6/OaU/rp0kQj0JTo8TE6mFD9eebRHpHBLlEyc6svE 3wkdYlASq1AxvG55WpUuRBE3hzRG+XGIxWL8RnUhIiYea1MjlEolY3ec4MrhffgHv2fd35u45Hec qKhojp/yY/zkaWzo0YTmv/lkaPwPcQks9rvOmQsLNPxKBILsISTBAkE2Cg0NxcLsy7a7GREcEsr9 R4+p8ZUk+s8xIzh9/iILnz7TShJ8W5bEiagYTqyeS6UShdVWO1Qq1SVJpcry88dYWzImjXzvjLM9 cUrlp011JY0MGRkUSi6LrM15+t4NQCwW0aZK6S+OKT/Ovuax/P/aZOnH1rZ1ShZkxcBOOFqlrslu X6McG67dpkMhT8QiEbMvPeDKuwj8QyMJjZOhJ9FBrlQx5Zw/S+uV4mVkLIWXHyC/uxNj2zb4ZowL erflwv1ntNx5lsf9GqdbOs1YqsvM6sXod/gaudHFih9n9u8FKZwjkdoFvdjQqzmWxobsu/mQqwGB JCansPzUNVKUKqY0r86oBpr5Yqot/8zmisVipreqBaQ25akycz1u+QpioK9PLltLRtYpm+EEGGDa oQs0adaM/Plzblt3gSAzhCRYIMhGk6dMoVatWjSsUyvDdYFPnD7L5FlzOX/lKgD1a9VgcN9e7Dl4 hOTkJA6fOEWCTIaBvj7BoWEUzEBRfU1w1JWgVKmws7JQa/F8v6u3uCAW093KAms1Vq0Qi8WY/mfG N5eelAsx8Z/KUP3bs/cxHH7+jmMvQngdFUt1T0dmVy+KVEeHv+8GMPjodbaP70ftEl9vUFBy9SHi k+XEJqUgkyswkupSqWDeTwkwwKhWdfE+dh6b2duQK1WYG+pTqXA+RlavyNEb/rwOieDJu1CqeaRu 3Ftx8xkWpsZcXTQ+3dcslUq4u3wSTq0Hc/BpIM3zp78+eNPDtwBcJImGGKZzds6RQOoXp4NDO356 rFHx/DQqnprAzW3/azVBkUgknB/bjftvQ3G3Mcc4k+vsX0dEseHiXR483q6hCAWC7CckwQJBNrl4 8SLNmjVjxIB+ODlm/LZrm+698UlK4pinK70Dgzl47ASHjp+kiL4eehIJQ02MsDIx5FRsPH1yu2Gj 5vJmGbH5QxRTP0RjamSIrpqvf3+vLz6NO1Pm2StO5nLFTSpV6/j/NsXBjvLPX1LR9xh7WlVGhIj5 Vx+z/u5zYpKS8bC3oUrR/NR3tOWvHUc5suwAeaxMuPQ2glVDu341ARaLxRycPJCl+/1QqWBAk+pU K+Kd5rILazMTwnctJiY+gWlbDzGiRR0sTY2Zt/s4x28+IJ+VKWMrFqaJtysAux+9xsL029Uv/huL o5VFhjbhnX4Zgn94NKWLF+Xlg8d8LJbwQ/BGl1uiFFaduU6PyiW1HU6O4eOStQ2zGy7eoX2HDtjb Z72ro0CQ0whJsECgYSqViqVLlrBz1066tG3FzEnjMvxcpVLJ+w+RuFuYkVtfj4OerowNDsNRV8JQ 28/v8Zczzt7OZkqlks1RMWyWJRGYnMyOeZOoW+HLpQDfy9vTjchLB6nefSgtXrzCz92ZkOQUjMRi HKTqbeRgpyuhu6U5KwPDcZm3ExEi8rrYM7tPO1pW+nyTVI/alVi47yTHbz3g6IzOlMrn+c2xa5co +M1Z4v8yNTJkRrcWn/57cNOaDF+1nQS5gsZ5nRGLRKQolLyOjsNBJ3Nv5U62ltwI/pDueR0PX2fi iCE4O9rTfeAI4lF+WhChn4OLCylR8pgU7FUiJmw/KSTBanA/5APNWwgVIQQ/FyEJFgg07MSJEwwf MYKpf4yiU5uWGX5ebGwchcpXwdLEmAZmqUsc9MVi/nLS/kzMtfgE+kVEomdoQJ8OzenRrD62Vpqr pWpqbMTBJdNxpbtfPwAAIABJREFUrNqMwo8DALA1MuSym5Par5WoTL2N/mLDbKLjZXi7pj1rL5VK GNaiNsNa1FZ7DF+zcUQP2s9aRclVh5hUuTATztwF4Ld0EvD/alquGD3m+RKfnILRN75IRMYl0LZp Q3R0dIhNSGDjv44VQferm+WekEwAcqLFpG5KE4lQKpVYISYfEszQwQExEjUm0vKPie9LqQ7RErC1 sgURRAaFMG7nSSY3r57uGEGRMRy++5SLT1/zMOQ9wTEJJCQlY25kiEQsIiohkY6lfZjVupba4v4R KJRKrj1/y6SCGf8SJxD8CIQkWCDQkMjISMb98Qd79u5hwoghDO7bK1PPX7pmHUmRUVx3yRk71k/G xuEbGUOwSkWoXMGk/l0Y2K45kgy24f1etlYWxF49wp5T51m8eTdX/R/xUJZI/ixUjfiWqsZGbIiM pu30FZyZM1KtY3+v1lVKUb9UYYr1ncj6R4H0qV+F2T1aoJ/JJSIdq5el+zxfLr4Np2Yux6+eZ2dm zIYduxnerxdB/tcwNNBHJkukbtsu3PZ/wCupmILJkJ//X/88iTzkY5thJTSpW4vendvxNOAluw8d 5fSF1ComdoiphgEm35EIK1FykxSCDKVEKeQ42dvTpXE9WjaoQ0Hv1Ooa56/eoH6Hnlx/FcS8NnXw drLhQ1wCx+8/4+yjV9x/F0FwnIwPsXEkJiXj7uJEEZ/8tKpak9zubrg5O/Lq7TsSZDIGjZ/KijM3 frkkeP+tRzi7ulGgQAFthyIQqJWQBAsEGhAZGUnJkiWxMDVh66plVCibuWUCkVFRTJ+7kHEmOWMj 0uPERHq9DaZ7s/oU15PSoHJZqpcunu1xGOjr0bZedWqWLYldpcacjYtXexJcwcSI4TaWzH7wDFlS MgZ6mluDnBXGhvo89Z3xXWOIxWLyu9jTce8Fgoa0QPyVjYx9C7mzedc+hvfrhb2tDQCmJibcPHmQ F6/eULVpG86/C+IKSVgaGRMan9pgYsroYYwZ1O+zDYY1KlWgX9eOKBQKqjdrx9nLV9klTaFFsi5G mUyElSi5TQrPjaXY2jkxqlNbGtasinsam00rlCrB7RP7GD39L0pOWo5SpUKpVOFsb0fhAt7UbVIe n3xe+OTNg7uLU5r1b4v6pG6m6zl8HBt7NslUrD+DxWduM+iPP7UdhkCgdkISLBCo2d27dylSpAi/ FS/K6f27MDTMfCLru3kbVjpimphnfMOTJuWWStHXk9KzRX2K5/+yfm12s7Ywo03daly5eI0+Ghi/ t40VCyKj6TR7Ddv/0MQVtO/W0onoN+iNf2gkhe0t0zzHVF8XWWJkmsc83V15desiC1etY9m6jTSq U5PBvbpibmaKnl5q5YG0qoTo6OiwZ/1KxGIR5rkLsUUsx1FHl7op6X/ZCELOUXESEl1dbKytWTVh FE3r1ky3Gomnmwvbls9HqVQSHROLsZEhupnoXpiSkkLbfkORJSZSr3CeDD/vZyBXKLj29BWH6v1a 1TQEv4acu7NBIPgB7dmzhyJFivB7z25cOXE4SwlwSkoKcxYto5N+zpmBlIjFeOtJGTxzibZD+SSP mwuXY+M4EROrkfHL6+ux++JNFIqfs2WwRCLBwdyEe6FpJ7mQ2jHu1ZtAEhJkXz1nQI8uPLp0ihnj RmJna/MpAf4WczNTTE1MGDOoH+OHDSTOSJ97JH3zOW+Rc1KqIEWpZNLwgQRcPkmzerUyVY5PLBZj YW6WqQQYUpP5XYeO0ai4NxItVF/RplcRUdhaW2FklL0bbwWC7CAkwQKBmiQnJ9OrVy+O7drKwplT M/XhrFAoiIqO5vY9f3oPGYEqIYG2OWQW+B/L7G248eAxH6JjPjV/0CZnOxvcHB3oHRhCnYDXah9/ gbMDYpGI5lNyTuKvbrmd7LkYGPHV486mRliaGnPq/EWNXH/K6GGMGzqAvl068kD69b8XJUquGOvQ pU1zIu5fZVifbtnatlcikVDQOy+V8rln2zVziqDIWBzts1ZWTSDI6YQkWCBQk7FjxmBva0PNqpUz 9byo6GgsPfJh5+VD9YbNOH/oCKutzbLUuleTbCQS7AwMcKzSDNNSdXkdFPLN85VKJS8Dgwl4+469 fhc4cfmGWuPp2rQuzw5vYtWk4TxNSmZu2NeTuawwFIvJryflwJW7yBUKtY6dUyzq346Nd59z9lXa /y/vhLwnJiGR0sWLajSOTq2aEq+QE0XaX65O6oOFlSXz/xyLpYV5mudoWpEC3sw9chGDbhOx7j+T ytPXEvgh/VrLPzpvRxsePn2WI774CgTqlrM+ZQWCH9SpkydZsXIlvTq1/+o5Zy9ewtDBHZGFPTLZ /28v+27ehpGOmEde7lx3suOogw359NW72Utdxpka09nMmDz6Ujxrt2HXibNfnJOSImfN7kOs23uE 3HXbUqxFD5oNGkftXsM1ElPXJnXJ5eLIydh4tY+90iW1coJty4GE/IQJj4+7M0pg8rl7aR6//DYC D1cXbKw124Y7t4c7nVs357R+2u2xw0RKtq2Yr9WlCHWqViRBKSKXuxu71y4lTkcf98FzmLrvtNZi yg42pkZYmxjz8OFDbYciEKidkAQLBN/p2LFj9OzVk85tWtK2RdOvntdj4DD0U5IBMHT0wMojH0HB IYyaNJVOam76oClVTYwYZWfDbid7Curr8fu0BahUnycuW46coufEOUxcsg5bU2PuujvjqMEubwCx 8TKeJCWrfVw7XQnncrsRm5BIod7ptyX+EbnbWVPQLu0az1U97Hn24iUbtu/SeBzGRkbEKlJ4gxwl SmQoUX6cGVYqlew6dFzjMXxL60b1iHhwjYdnj1C5bClO79yAgYEBE3b7MXXfGa3Gpmnl87hy8uRJ bYchEKidkAQLBFn08OFDqlSuTL++fRg1oB8JMhmKr9w2f/LsOW/eBrLd3YUTudy4k8cTc6UCp/xF sNDVpYe15hpNaMpOd2dksiQu3bn/6bHo2DjuP3uJjaEh1jIZf1mkrmsea5tafaDb+Jm8CQ5Veyxj erTDWD/9DVlZ4SSVstfDhQ+x8Vx5FKCRa2hTr/qVWXztMQEfvtxgmNfajP7Fc9N/1Hhu3vXXaBwl ChfEw8OdI8hYp5PIBuLZaZj6BcsnScWcZas5c+mqRmPIjFa9B+Odx4szh/cx+9gVZhz48q7Iz6JT mYIsXTj/q+9vAsGPSkiCBYIs2rJ5M2fOnqVBrRqMnTwd383bOO73+QehSqVi6669lKpel3pGBnjq SfHUk2Ii0eGQoy09rMw57fxjbjqRiMX4iOHP5RsASJAlkrtuW7bvPcIUKzP2uDpR9uOO8tqmJvxm aoLv3qN41GrN/tNpb7T6EB3DjNWb0l1v/I+IyGjajviTQTMXU0ZHh91RMSRrYO3ijY/VEQxzUMUO dRnUpCYA+ZbsTfP4zBol8LYy5fBJzd72b9e8MffPH+fJZT9unDjAxqXzSZDLeYOcYF0xhgYGNOvx e45Ym3r41Bku3bjN/m2bqFS+HEd2b2P6kUvMOnRe26FpRIW8bljpSdi+fbu2QxEI1EpIggWCLBo2 fDh9+/Rh+979hL9/T35dHY75/T9RCAsPx9wtD+179mWIoR6zHWw/e75ULGaUnQ3SHLYBLqMuxcdz KS6Bk5dv8MeiNYxduBqxUsUZJzuqmxh/cf4WZ3vaf5wZrli8MJCa9A6ZtQSPWq3oMWE23g06Mnbh ajxrt6HFkAmkpMi/en25XEHeBu3ZcewM+aW6nEmQMTwoFO/HAWz5EKXW13oyPoEKPnko5OGi1nFz itWDOwPg9zI4zeOeJvq8ePM2W2Lx8vSgUAFvqpQvg5uLM1fMpfxWszLrFs4hMTGJNZt3ZEscX6NU Kuk1cgITx4zEyTG1m2P5MqU5smsbUw9dYN5RzVTS0CaRSMTUJpUYOmgAwcFp/44IBD+iH/PTVyDI ASIjI4mLi8PNyYGhvbrwXiLl7607CA0L5++tO7DLU5CY2Fhu5fGgvaV2drRrkqWODiKRCD1dCUc2 7+b0/mNMNTf5dDxKLmdqSDgnY1O7iG14H8XO+EQmD+iOuWlqkpyvQQcWbNxJUvh7th0+SQ2xiCt5 PChpoM/uk+eo02fEp/EevXjN+Zv/38B18+ETomLiuJ3Xkx7WlqSoVGyYPgaAPR+vqS4xCiVFcv2c CTBA55rl6Vi9DHU2nSIljbrIV8PjKFWsSLbG5GBny+NLp3j/5A471y6jcrnSyBIT2X7gSLbG8V/j Zy9AoqvLgN49Pnu8QtkyHNy+mYn7zrHw+CUtRac5lfJ50LZkfqb+KXSOE/w8fq2q3wKBmsTGxlKr Zk0K5fFky+LZmBobs3zDVqRSKfZ5C+Jobk57C1PG2dkg+UFnetOTT1+fp3k90yzl9jQxidYh4eT2 cGXtgyfoiEWAiM2zxtO8ZqVP503q15X+U+fj6+pEnn+t6d3q4UKXN+84fe02VbsNJkGWyPX7jz+7 RkEvTwCMxWK2RKZWbug4ehq2Ul22fqzqoC72Ojos2neKeb3bqHXcnGRurzb8ffIy+568pXl+t8+O GUrE32yYoWlyuZyydZtiYW5G/y5fr8CiaUqlkqXrt7BmyYI0G25UrlCefVs30rB1OyQ6OvStVkoL UWpOt4pFqT53MwuXLMlxJRwFgqwQkmCBIJMePnxIoUKF6NiiMQsmjsL447rXYb27snzVevpbmtH2 J5z5TUtaH4TJSiVzw95jb2vD1c3LeBcawZbDJ2lXvwaOttafnVskX24A7sgSP0uCAf5ytKPk05eY PHlOUamUabncSFAquZog42aCjBtBIRQ2S11escXDhQSlkvuyRHLrSdX+Af2Xox1Fnr6gxqg5nJgx TK1j5xTmxoZULJiHNrvO4XvXicmVi+BkaoCNoT6WumKCQtS/oTGj9h09wZt374h5eluryVfVlp2Q K+TUq1Xjq+dUq1yRPZs20LR9J54ERbCgQz2i4mWcf/KandfvU8TNgVuvgpCIxRjpSWlU3JsaPrmz 8VVkXR57a/TEYp48eYK3t7e2wxEIvpuQBAsEGaRQKLh+/Tr169Vj1thhDO7R6bPjw/t0Zf7q9Zhl YyernKjsmyD0DA0Y0qweIpEIZ3sbhnf9cgZVoVAwcu5yypga09LC7IvjlhIJ/vlyYfifpMfHQJ9u Vl9W0zAUi/nNKPNtqjPCRKLDZHsbxt19zNPAEPI422vkOtp2atYI7r14S7F+kzgREITyY/k7IwN9 KmmxdnV0TCwJskSUSqVWk+Dg0DD6du+abmvomtWqcOXUMcrVqMuGK/eRyWTY2tpQsEB+Vl57SvEi hVHq6PAuNpbWK/Yg0RFjZWKEk7EeBZ3tKJ/HjeoFcmFqmPPqhZfwcOLGjRtCEiz4KQhJsECQQSNH jmTBggUsmz6Bbq2bfXHc0MCAP4cPYNqcRdQxMfolbxdODA4jMkFG/Nm96Ot9u5LC1qN+PHn+ktNO X08o/5sAa1NTc1PGhYTzOuz9T5sEAxTydEF+ZDWQevs/IDicqZsPsH3/QSaPHkrE+w8MHDsJExNj ls+emi0xrd2cWpVAm80yABKTkvHJYPLnk9+bJ7eukJAgw9XF+auxy+Vy7tzz59GTZzx4/Jg7/vfZ vsMPthwncO5gdYavFiVdbbly6SIdOnTQdigCwXfLOZ8wAkEOFBUVxa5du8jl6cHmjX9z7eC2NBPg f3Rv3ZyQmFg+fEcZp+DkFPq8DWKjmiscaEKMXP5ZyapOH5eBGJWslW6Zs0Nnr1BUlbMS3a9JViqp FfAagN/yemg5muwjFovxcrIjSa7g2YtXuBYti0uRMmzZs5+VGzYDEBYewW+1GjFm6iyNxLBm0zYu Xb/JkJ5dNDJ+ZkTHxHLH/376J35kb2eHp4f7N5N3iURCiWJF6dCmJTMmjefo7u1MGTcGUQ79uyjp 6cTNq1e0HYZAoBY5869MINAipVLJxo0bad+2Lfny5uX+zatsXDCDN1dPUaTAt2eBbj94hLWZKdaZ nLFaFv4en4A35H3ygsov33I8Np4JIeEk5oCaqGnZFxVD0YDXFH36knIBr/GXJXIyNo6JwWEfN8HB 0m370nzu+6hoJixey4EzFxlsq9l2vOpwPjaews9fkWJsyIW5ozHT0JKLnGxsm3oAvAsOplbx/ETt WgzA7kNHsfcpiTgpgcWr13PUT30NI+RyOTv2H6LHkFEAzJkwSm1jZ9WKmZOYu3gpUVGabaFtYmxM eGTO/BJc1M2Be48eI5d/vXyhQPCjEJZDCAT/EhUVRYvmzXgfFkqfDq0Y0LYxJYsUzPDzr9y6i206 57xOTuZ0bDynY+O5nZKCgaEhEdExTB05iIY1qhAcFk7DLv0Yam6Cfg6dDVoUGU0KIjo0qMnfB47T +OX/a8j2bd2YCsULUShPrs+eo1KpuHz3AV3+mIH8QxQr7KzIq6Eub+o0NjQcE0MDAjf9hUgk0nY4 WuHj7vxpicTbsPc0m7wEE2Njmnftg66uBHszI9p0bESbXr8T8fg2OmpYF3/8zHla9eiPsZEhj88d /e7x1OH+k2dYW1lhbv7lGnZ1kkgkGBnkvPXAAMb6epgbGRESEoKzs7O2wxEIvouQBAsEH+3du5eJ E8bjk9udQ6s2p1kCKT2H/c5RQvx5onQsJpZ+70Jx15XwKkWOjliMt1cudG3taOGdhy4tm1CmeJFP t0w7DhpFBakurlJd5EpljiyxZiqRkKinh+/U0fhOHc3dJ88x0NMjj/uXtXTjEmRsPnySv3y3ERYR SWWphL+c7X+YNdMuEglXYuIIjIjExcZS2+Fo1b7Lt2n25xIAihcsQEh4OAmyJI7cfMDsni0ZsmKr Wq7z+m0grXv2p3/XDiyc/IdaxvxeV2/dZeGaDeT18tL4tW7dvYe7pUn6J2pBilxBrEyGsfGXDXEE gh+NkAQLBB+dPn0aQ10d1syenKUEeNayNVy9dYcxjqltkGPkcsaEvedsUjLtmzYkMjqaxR1bU7Ni uW/OlBXzyc+a+484ERuHrYkJq6zN8clhs0KL7ayp8PwVRy9co3b53yic9+slnsp36M/zV2/pZ25C D1eHHJnUf8syZ3tKvXjDnou3GNC4urbD0ZqGExdx+OpdAM7u3kSFUiWAfzqojadwn0moVCpiYuOw +M6Z0q6DRlL+txI5JgFWKpVUaNKWujWrs813tcav5+LkyP3AUK1Xw0iL36MX5Mnlibn5r1EGUvBz E5JggeCjAQMGUGTtGqJiYrG1ztxa1eiYWMbNWsA2Z3tcdCVMDA5jT2IyxQv7cPnPsRT0zpPhsUb3 74mTgx2Du3di3ur1tFm2lrx6UroZG1LHLGfMDjlKdalsasyybfuoXf43IHW5w+pdh3j2OpAUuZy5 I/ohEonQ1ZVgIxbRxybnr/9Ni6lEgkKh5E3Ye22HojWTNx3g0qMXvL52Bhcnh8+OicViVs2ewqh+ PWnavT+uRcsyqFdXhvbpgZGhAREfIpm/ci2GBgaYGhvTpU0LzD/Wd5bJEnn55i2/j55AvEyGl6c7 Ul1dzly8zOvrZ7TwStN2y/8hcrmcqhUrEB0Tg76Gy8VVrVgBhUJJYrIcQ/1vV1nJTqceBNBlzX5W rvPVdigCgVoISbDgl6ZUKjl79ix3797F0/NjB7IsbHy6cusu1ibGhMjldHkdgaGpCYdWLfo0W5YZ nm4uTBzSH4CJQ/pTrkQx/C5eYdym7RxIkLHUIb1Vx9mjkbERg89eos3wP7E2N+PSnfvcefIcC0ND IhMSqFSyCI2rluePXh1oOnAcyUol0hw2q5VRhY2NmL/nBHN6ttJ2KFoxaeM+Dqxf8UUC/G+53F25 e3I/Zy5dpf/YyUxfsPRT5RAbK0tcHB14+Ow5hoYG9OrYluu371K2blMQiShR2IdGNaty+/4jIiIi OL5lLc4OOacMXbGC+enWpgUz5s5n0KixrF++hI5tNfe7oKuri6GhQY5KgFefucH4/efZvmcvlSpV Sv8JAsEPQEiCBb+sDx8+0KB+fZ4+fYKdtRUmxsYsmzYeQwODTI917uoNgiOj6BsJ4wb1YezvvZBK 1fMBVqNiWWpULEuPti0oUrMxB6NjqZ8DZoTrmxpzS5bI2Ss3sU5JoayhPuvz5eKhLJE2rxNwd0xN YhpWLoe9tSXtQ8LZ/nGpyI9moZ015WPjePD6HQXcnLQdjlZ4un253jstlcuW4v7pg1y8fhOVUkX5 f30R9K5YhyVr1rN+605u3LlHs/q18Z03XeMzq99LLBazaMofbNq9HzNTU5o0qKvR67m5upCcnML1 F4GU9NTu5rNX4ZEM2nqcgOhEzl+6TJ48Gb+rJRDkdEISLPglRUZGYmVlhaebC68un8hS4vtvRQrk o1OLxswdP/K710N+jaebCyP79WDpqvU5IgkWi8VMTGNW2k439W3F29MVAJFIRK1yv3Hk1PlsjU+d 4j/OaJrksLXZ2WHYym0AeHm4Zep55UoW/+KxUsUKc8TvLG7OjvifPkjeXJ5qiTE7zF+9gcSkJMJe PMbERLN/fyqVCpVSya1XwVpNgu+9CaHmXxsZNHQoO4eP+NQpLzk5mZMnT7J540aioqOYN38BXmls GNyzZw92dnaULVv202ObNm3C0tKSsLAwzp07x8mTJxk4cABDhgzNttclEPxDSIIFvyQzs9REdViv Lt+dAAO0qF+bFvVrf/c433Lm8jWmLFhOpxyQAH+Lm1SKqYEBE5f64mxnw4DpCwHY7f7jllNa+7Fx ya9UHUIul1NjzDwuPnjGyW2+aunW5jt/hhoi0w7fbbtoXL+uxhNggO2792JsZEiPyl9+kchOd94E U7VKFQYPGUpwcDCBgYG8f/+e7t27kdfTnVoVyvDBSJeyZcpw7fp1PDxSG8m8ePGCgb//zkm/UyQm JjFr1iyGDx9OVFQU7du3/zS+sZERcfHxDB06jL179zFy5EhMTEyoWLGitl6y4BcjJMGCX86rV68Y OWI4Lk6ONKpZTdvhZNi7kFDkCgUjf4BEbKCpEdN8t6EjFlPCyIAlTvaZbiCSk3yQK7C3MPul6gRP 3LiP+2+CeXbxOB6uLqhUKh4/f8GHqCjKlij2S/0sFqxez9MXrzhxYK/Gr5WYmMjoiVOond9D65Uh Knt70H/0IoyMjD49Vq1CWWaPHkyn5o0+PRYUGs7ixYtJSIjn0MFDBAUHM6J3V7beOc+9R08p26Q9 I0aMwMHeniplS3Fqy+cVNg77neP3CdOpX78+ACkpKVpvkS34NQi/ZYJfzvXr19m+YyeX9m3Bwc5G 2+FkWMVSJVAoFByJjs0xVSK+prOVBZ2tLLQdhtpcSk5mSvsG2g4jW7nYWKFQKLl88w5zlq9lz+Hj xMYnEJ+QAMCDM4fx9sqVzig/B99tu+nVtROuLpq9m/HseQAdevZFmSRjVddOGr1WRrhamZPL1hL/ tyHMHT+CZnVq4OL45YbFto3q0KrfcPp0aMW6WRPxzu356b21dLHCpLy4w5nL1zEyNOC3NJoP1a1a kbpVK3L/yTMK1Wz6qUSlg4MDXl5eHDp0CGNjY5KSkvjw4QPW1tZZKmMpEPzXj7lVWyD4Do0bNyZf vnw06NKX9Ts0P7OjLs4O9vjk9WJpXIK2Q/mlBCWnEJ+cQkGPH3c5R1Z0qVGewh7OjJ02m+f37zKv ezMid8wnYd9ycjnaUbxWEy7fuK3tMDUu4NVrnr54Rd7cX6+F/b2u37xFyUrV8S5ZhrDA19wY3z3H VIaY264ORnpS6lWtmGYCDNCwRhVkT28wd9xwqpYr9cXkgo6ODtXKl6Z0scLfnN32yeuF8rU/6/6a wqh+3WlUrSLnzp3DxMQEkUiEvr4+jo6OSKVSDh48qNbXKfg1CTPBgl+Orq4u9+7dY/ny5XQZMICX b98xcUg/bYeVrsDgEN6FhNFO9/tb0goybkxoOAU9nKlcKJ+2Q8lWUqmE07OGpfG4mEerJvOH7x5q tunCn8MH0atDK7Wsrc9pDp86Q6MuffHK5UmbFk01co3tu/fSte8AGhTKxdFFozA3ylk/xyrennSu WIw67Xvy9PyRbFmi8e+lFhMG9WbT3kMkJiXTp0NLzExMqN6mOw0apN6ZUSqVv9TSHIF6CTPBgl+S rq4u3t7eABgZ5qwPnf9SqVScvnSVgtUbUUoHBttaazukX0pgUjJSYX3iZ8RiMdO6NmPNoE7MXLSM xl37oVAotB3Wd/sQGUWlpu0wy1sc0zxFad5jAB3btubBtYvY26m/vJ9KpWLomPFYGOqxsEP9zxLg ZLmczit3Ydl3OoX/WMLWK3fVfv2MmtmyJqokGX3HTs72a9vZWDOkRyfG9O+BhZkZYrEYv21rWT59 PJD6u9inT5/Pfv/kcjnDhw9nzJgxjB49+lO9aoHgv4QkWPBLUalUvH37lqNHj9KmdWv2r1vK8N5d tR1WmpKSkhk0cTpm+UrSoFNvehvoscQ+ZzTK+JXMdrTjTsAbRq/dSUy8TNvh5CjNK5Tg+ZqpPHj4 iDrtupOUlKztkL7LvFW+PA54RbeO7ejeuSOPb15h7ZIFGpv9FIlE3Ll4huKlSuM4cDY1ZvkyftdJ 5h+9hNOgv3gQq2DsyGGYOjjTZfU+WizZrpE40qMv1WXH723YuGsfF3PIEpiebVvwyG8/AMuXL0ci kfDo0SP8/Pxo0rgxc+bMYdasWcyYMYNSpUppOVpBTiUkwYJfglKpxNfXl9y5PClerCgdO7Rn65LZ 1K9eWduhpSkqOoaS9VqwZ8defG0t8fd0pZd1zq8K8TMqamjAWBsrFu45wfJDp7UdTo5jqK+H/7KJ PA8IoGHn3sjlcm2HlGUmRkaER0Qwe8ok5k2fgptrxhqEfA8rK0v2bvmbPZvWEyM1Ye6xK4zcfpzu XTtz49wpRgwawKWTR7lz8QwnHryg9JQ1Go8pLUXcHBjTsDIteg7MMTOreXN5oHztT3LAbdxdnMif Pz/VqlVTo5INAAAgAElEQVTD2kjKI7/9DOiSWo5t3rx5Wo40++zevZvcuXIxbNhQYmNjtR1Ojifc 4xP89N69e0ed2rXRFYPvnMmUK5nzyzsNmDANeXAIfo62Wi+TJIBOVuY8S05m5vYjFPRwoU7JL3e4 /8rMjQ25Nm80Pn0mUrVFR/6aMIoShQvm+L+zf7vl/4BR0+bg7OSolb+5+nVqUb9Ora8ez58vL/5X zuNTujyLjl/m95plsjG6VMPrlmfZyav47thL11aaWSOdFRKJhBcXjrJk/RYqlipOwXypXe2CQkMB sLKy0mZ4GqVSqdi4cSPBwcHY2NjQtWtXerVvyf0b15g2bRrTp0//H3tnHRZV9sbxD8MwNIKkgaCC gCIGIqJidwd2d3d3d7euHWt3d4stIqiAqKAoIN0wDDO/P9hll5+F1AzrfJ5nn/WZe8853zvMzH3v Oe/5vvKWqNAo765K/tOkpqbSskVzalWpwINT+6lZ1bFA3JjvPnzKcF1tZQCsQMwvYoIDKkzbeVze UvKU+6/9OXXfA7H412Z0C+vp4Ld1PiHBwdTv2Iu5qzbkkcK8wcHOhqoVHYiOjqFWkxbIZDJ5S/oK S4sS9O3ejWNPXsplfFWBgC4uFVi9bY9cxv8Zw3p1yQiAAXatWMDM0UMoW7Ys3bp2laOyvKN8eXt6 9uzJpEmTGDF8OMunj2fTghmsmzuF7du2snv3bnlLVGiUd1gl/2n279+ProY6a+dOLVDm6+oiEQky xVhyVPIP400M8Q0K5uITb3lLyROe+QfSeNoahm85SiG34TzzD8x0vN28jZj3mkKDycvZfPYGickp mY7raGng88dcOtSszIvXvvkpPccIhUIenDtC0JPb3HvwiLDwcHlL+iYlzIsRGie/3PRJLVwJ/hzM 4o3bfn6ynFFXFzF7zFCmDBvA/gMH5C0n1/H19eXly1e8vHoKaaAXca8fMnZAur+0lWUJLu/dwsgR Ixg7dgyJiUprzW+hDIKV/Kf5Y/Nmxg/qXSBmf/9GJpMRExdHIeUssMJhr6lBIZEIv6AQAAJDI0gR p8pZVe4gFktoPXcj40YO4/Obl1iWKMGrwM+ZzvEPiaBd61ZUqlmH1RfcMe48htL9pnPTM3PA6/85 jGKmBXMTp56eDkVNTek5cKhCzgZ3bNuGoMhYbrx6J5fxDbQ12TekAwtWb+Khxwu5aPhVUsTpGzb/ Cw4m/2bz5s0A2FqV/ObxCmVtuHd8D6+ePaFThw75Ka3AoLzLKvnPcvv2bT5+/ECjWtXlLeWX2Lr/ CAkJCdTX0f75yVkkXCJhX2Q0Iz4GI1aQTS0FFZGqgGN3n2DXfxqle0+i6fRVPHj9ln4rd3D0zhN5 y8s2reaup4SFJbMmTwBAV1eHsJjMG2tS06TUquHCykXzefP8MR9eeVLYyJjLT9NnxmMTEhm+fh93 vHxp06RBvl9DbnFi+3ouXbtB47YdEIsVy/GihHlxipiZ8seNx3LT0NDeiimtatO8xyDCI6PkpiOr rNy6Gzc3N1RV/zse63FxcezcuYNHZw7+cJKnXBkrFk0axZ17d/NRXcGh4KwPK1HyC3h5edG9WzfW zJ6MSKQYlZeyyvnrt7GBXMsHPhYdw+TgMKR/zWqJP8OW4kVype/fkfmF9FgX8BlXdRFTzIsywvc9 ruMWoytSY/cVdwL2LKW4sWI4eSSLxSw8cI5USRqNHMtRSEeLOXtPEZuYTFyKmEYVy7Kwbzs2nL7G 4zeBvHzknhEovA/4wITnL5i66wQ6WpqY6OvxJjAokw2aibExGhrqPPZ7T6OpK3ng8w6jwoU5v28r 9Wrm/8at3MKpkgNPLh6nWY+BbN6+i5FDBspbUgaJiYm8Cwjk0vAxctUxqbkrLz6GUq1l53wropEd lm3eCcDWrVvlrCR32b9/P/ZlrKniUO6n5x6/eJXGjb6/6fJ3RhkEKynwJCQkcOrUKYRCIeXKlWPD hvUcPXKEJVPGFsjZqAFdO9D3Yc5nFIPFqUz4EsH92Dh0tTR5e3IHVx8/p+u0JTxNSMJRwSpTFRRc dbVx1f1nlv7FX/8eERSMp46WXAPgwNBwNp29QWNHe8wK61N70nJMTU3R0tJkzalriFNTKVrEjGpO VahWqiRbd+3hTXAoVzxec3DnNooV/efh6NyRA8TGxVHK0oKADx/x8XtDWloazRs3zDTml7BwomNi aNukAcsWL6CSfdkfajxw8ixb/zzMIw9Pqjs5MrJvD1o0rJsn70dOqFy+HAsnjaH/+Km89vNj06rl 8pYEQHhEJAAGci7yo6Kiwra+rSk1biUtew/l3J7NctXzPSYtWsmaNWvQ19eXt5Rc5dTJE/R2a5Wl c2PjE/j06ROHDx+madOm6Orq5rG6goMyCFZSoLl79y7dunZFQyREnCpBKpXSwNUFnxtnMdAvJG95 v4RUKkUgENC4dg1SZXA9LoF6ur+eEhEmkTAhJJynKWJa1q7GniE9KFUsPbixsSgGwIHoGGUQnMt4 q6gwq0frn5+Yh7Seu5HXAUEsP3oJbU1NunR044+1K1FRUSEkNJSkpGRKWlpknN+3e1dqNmpGn+7d aN6kUaa+XJydMv5tbVWahvXqfDWeTCbjY9AnfO9cwsK82A+1PfH0pteoSbz78BFdHW0unz7OvoOH 6TZsHPs3rqS5Anp2a6inryJFRcfIWck/CIXpM/XB0fFyK7Ecl5RC320nOPnkJenrS4qXOw0QFZP+ d2vYsOFPzixYJCSkB7V/fz5/xtyxw5i0eDWzpk2lU6dO2JSxpkHDRixduhQtLa08VqvYKINgJQWO lJQUHjx4wOZNG7lw4SJ7Vi+ipQLOJGWVw2cuMHziDJJSxJQsUZzmjRvQtmkDNl24kqUgOF4q5Vx0 LFfjE/FWgfCEJOpWceDRuEHYlSyR6dyKZUpzZMlUOkxaiJu+HtW0f+8fwNykSJqUR77v6dvYVS7j 77/xAP9PoXx+85KDx07ywvslo4YMJCw8HBNj42+W/bUtY02At0e2b4SpqalYlDDHoWErHOxsGDuw Dw1dq3Pw1DlOX75ORHQ0AAmJSbx5H8iIwQOo51qTJu064lLViRrVnHn4+Cmv/d8qZBBcw8kRNaGQ 4QP7yVtKBoX09AAQqspvs+/qS+5c9wngxqGd1KpWRW46fobfu3R3k/+KM0JqaipVHB154eVFzapV aNukfpba6enqsGnBdGQyGWERkdx97MHqHfswNTXl9OnT1K1bcO+fOeWXguCUlBTatWvHpEmTqFWr FgD+/v4sWrQIT09PtLW1adasGaNHj0ZdXR2AkJAQZs6cyePHjzE0NGTkyJG0avXPFL68jytRTB4+ fIiTk1NGnplYLObZs2fs2LGdI0eOUMzMlO5tW7Dh3qUCN+P7N7Gx8bTqPYhnz71Y7lyG6qb6XAoK 59jx4zz7EoW6qgCbV2/oaVAIG011dAQCdAUC4qVSfJLFuKek8EmgSnhCIiXMjKnfqBatS5agSfUq WJkX/e644lQJ6mpCiqgpn4Fzi2iJhDcSCYXCIuWm4ZS7Bzo62sTHJ1CvVk2u3LhJ+WrpAbm6uog6 rjUpbGDAE4/nVCxvz/7tWxAKhejo6GR7TJFIhO+zh7zwfsneg4cZPHkWUdExWFqUoH5tV6rXqAGA qqqATu3akpaWRt3mbWjeuGHGdzs4JITKP0mhkBcW5sUY0bcHro1bMGvyBGZPnSRvSTzxeE5h/UJY mxnJTYO2uggzI0OFDoABnCs5ADB92jQuXLwoZzU558WLF7zw8iLF/xlqamq/3F5FRQUTI0PaNW1A u6YN2HPsNE2bNqVF82ZMnTadypUr54FqxSbLd8GkpCTGjBmDv79/xmsJCQkMGDAAJycnDh06RFhY GNOmTSMtLY2pU6cCMGzYMIoUKcKRI0d48uQJU6dOpXjx4hlvtryPK1EsZDIZCxYsYMaMGaxYsQKR SMTWP7bwxv8tJUsUp0urpry4fILiRczkLTVHbDtwlAkzF+BsrIdXexeKamkAYFNIm5HlLIhLlXD9 cyQH/IM5GBROYlQMFkVMSE5MRkVFBQszExo5V6RmhXJUK29LoSw4SUilUpx7j+aZz1sWFTHBooBt GFRk7iYkES9J48i0IfkynlgsYcPZ65xw92DFgA44WlvSrV41Lj57RekKVdDU1MSqVEnC3vvxPjCA pKQUZi9aQuiXL9RzrcneQ0c4ceYcHdrmPH1DRUWFCuXtqVDenqXzZpOUlIS29rc/jwuWrSQ2Lo7T h/dnvGZgYIB/wAeF3Ui3dMZEdh89yZzFyyhaxIzunTrIdQnZunQpEpKSCYmOw0w//3M7jz9+yYmn r5BKC4bdmLFhYZKSk+UtI1eIiorCzMSY3HLu69m+FU4O9pRr0Bor6zK/ZVyUpSDY29ubSZMmfVVs 4P79+8TFxTF//nxEIhGlS5dm1KhRLFy4kKlTp/L48WN8fX3ZuXMnenp6WFlZ4enpyd69e6lcubLc jytRLGQyGaNHj+bOjWtcP7yLeh17U9vFmbUzJ1LJ3g7dXLQMkxdfwiNo0X0Ab974s7G6He1Lmn7T 3kZXTUhrCxNaW5hQ/fRDokSavDm5I9vjSiRpuA4YzzOft6wpZkaLQsqNEbnJvYRExBIJmqJfn535 FaRSKaM2HWD/7SeoqAio41qDepNXggpoqKtT1taWdq1bMnnsqIw2RkbpJWOvnzuV8dqT55689vXL dX0CgeC7AbCP3xvmLV3OvBlTMzkJGBsZ8ikkNNe15BYCgYAwrwes3LKTsVNmMGjUOC4cO0SThllb is5tBo0ah0wmzXB7yU8uvnhDx/UHaVq3JkuG9s/38bODlWUJNDULzv4HX19fBAIBFhYWXzkb1alT B/MSFtRo34OHp/bniiOHnXUpLIoXw9bWNsd9FUSy9A4+fPiQBg0acOjQoUyvly9fng0bNmT6Q6mo qCAWi5HJZHh4eGBjY4PeXzlMAFWqVOH58+cAcj+uRLHYsGEDN69e5ur+bdRxqUqE131uHE7POfsv BMDLNm/H2rkelskxvHKrgVspsywV8XgaHotr5fLZHnfYko2oV2/Fo5d+dDc0UAbAuczw4DCuSCTs mdA/T22ifD8GY+A2kiuvAvhj3WoiPvhz4sBewgPf4OfxiIgPb3l062qmAPh7fA4Oprpz1TzT+i2+ hIWhqipkwqgRmV7X1dUlOjY2X7Vkh7GD+lDUzBRdXR1cqjr9vEEeceX6TS6O60lRA72fn5zLjNp7 lmKmJpzbtYmaVR3zffzsEBUdw8WLFxXO7/lbSCQSbG1tqVPLFQMDfcpYWzFq1Cjc3d2RSqU8f/6c 5i1a8PTFSz6FfMm1cZ0rlufLl9zrryCRpZngfv2+vSnA1NQU039ttkhLS2Pv3r04OjqioqJCaGgo JiaZqwYZGRkREpJebUnex5UoDt7e3syaOZP7p/7MyPEtqLm+/8+nkFCadO5D6KfP7Kldjmbmxllu K/mrsEXFMqWyPX6japXYeuICaVIpNTXVs92Pkm/jJ01jRrdWdK1XLU/HaTN3AwlJyTy+dQ39f303 tLS0fnl5PjgklEJ6+fswpKWpidY3ZuSMDQ3Zuu8wuw+dQJyaSgPX6lS0t6N+TRdcnatkPFjIZDJC w8IxM8n69yc3kUqlfAmP4MjuHRQqlP8B6N8IVAV8iIjO93H3u3vy9kskb++ez/exc0L/Lu0ZP395 xj6l+Pj4765WyJu/P+vv715AnJrK28CPnLh0nQF9e/PK9w0AQ3t1YdrIQRQzy72KjCHhEZibm+da fwWJXN0ZM2/ePHx8fDh8+DCQnkf89wfvb0QiEVKpFIlEIvfj/5/e8T1SUlJILsA5RSkpKZn+r2gk JyfTsYMbCyaOxLqkpbzl5CoSiYQm3Qfi8y4Qz3YuWBf6tR9f6V8rnp/DIrKtoXVtF5LdT6FWrSUi FcU0tC+oeCYmEZEiplA+WFU1rGQHGtpoamrkqB+37r0AkErzdzndsHBhwiO+/hyvW76YDm1bUbxY UQ4dO8np8xf4GPqFdTv2EhMbh41VKWRSGZ9CQkhITOLwljW4tWjy3XE+fEov9Vyi2D+bQ+8/8aCc jTV6utnfBLhux17EYjF1XGtku4/cwK11KwbvPkl8cgqD6zvny5gJKWJ6bjnKoG4dKFnAgqWxA3ox dkAvbj14TKPug9DR0aFECXMuX76ChYXFzzv4Abl9bw0ODgYgPDKaIqbGONjZ4GBnw6zRQ7j/9Dkf PofQqeX3P/vZ4fz12zx/6YO9vX2+xTl/v1+KMDufK0FwWloac+bM4dixY6xZsyYjt0RDQ4Po6MxP rGKxGDU1NYRCodyPZ5U3b9581U9B5N+bGhUFmUzG8uXLMDczYWC3jvKWk+tMXLCCyMhIajjY0emG F3eaO6GtlvXSnSJVAU3Mjbn51CtHOmR/5Q++Sk6mdja8h5V8m26fQqlcxpJW1Srm+VirB3ehzIAZ tOncg/PHD2Upleb/2XfwMOcvX+Pdi6eZ/ILzmtv33Bk/bRYAz194UdHhn/QeHR0dmjVO9yh2sLdn wazpQPrM65XrN7l45RoSiYRmjRty+PhJFq//46sgOCExkcCgz9Tr0JMv4RFoqKsT98aDzyFfaD9g BE88vTA1NmL0gF6MGdA7W1Uk7z1+BioqX02s5De7Nq/HuYoj0+bMy7cgeO/d55gYFGLTwpn5Ml5e ULuaEyn+z/Dwfk27gaOxtbVl8eLF1K9fH6lUyu3btzE2NiY1NRUVFRUqVsz6dzq37q0LFiwAoIjp 16sdLo4VccmDDJSLt+7h1iG9PPjLly9zf4AfEBgYmK/jfYscB8GpqamMHz+e69evs3btWurX/2ez gJmZGV5emW/eYWFhGSkK8j6eVaytrSlW7MdG8IpMSkoK/v7+WFlZyf0H/N+IxWKmTJ6Mj7cXNw7t zNZNPaf4+L8jMOgzjevUzPW+D5+5wLYDR3iyezWlixehfIeBdLzxgtMNKqIqyPq1XvwYRs2KOVv6 qjMo3drJXCRifmgY7kkpHCpeBF1h1gNyJZk5HR2LikCF8/NHo62R998rgUDApmFdaTptFUGfPmNe /Nd+k6RSKSMnTGbdskX5GgADPHzylMfPPDDQ16eMVekstREIBDRuUI/GDeplvFahfDmKlbEnKSk5 Y0Z8854DDJ0yGwBNTU2O7tvFkNHjqNehJ28DPqAiEBD4ypODR48xe+FS0iRpTB316y4eo/r35OjZ i2zZuZtBfXr9cvvcQiAQ0Kl9G4aPn0SyWIxGHru8yGQyZh2/xsJp4/N0nPyikr0d7+5dZP2u/Yya PJnCBgZERkV9dV5AQECmdM9vkdv3Vg11ETNH54/DzN/cfPCEuQsXU67cz8sv5xZ/v285nYnPDXIc BM+cOZNbt26xZcsWqlevnulYxYoVWb9+PfHx8RlelE+fPqVSpUoKcTyrqKuro6GRsyVIRUCRruPm zZv069sH21IWXD2wHf18zLGTSCScuXKTFX/sxP2JBwAJfs9yvMz8b7xe+9Fv/HS2TBmOdYn0YOXh 3rXYtunHiAe+bHCxyXLQX9VEn8TEpBzpsSxqivuL18wPiyTsryUo98REGudzXmhBZ3tEFJvjEpAB UpmM6d1a5UsADLDu1DUm7zzGiMEDKV7s+z7Q3yMxMZGY2DjWbvoD5yqO2Je1A+Dd+wA8XnjRrlWL PHkQlUql+Pj5o6enS+THtznq69S5C+jp6KD+V6UsG9fGvHkXgHMVRw7t2o6FRfpSvY11aeYvXYFM oMq1sycRiURMHDOKsxcv8/lL2C+N+eFTMC16DsTbJ91NQ5wi/yXcT5+DUReJ8jwAhvQgOCI+kQgF qpqXU1RUVBjRpxtDe3bG85UvUpkMx/JlOXHxGs6VymNZvTE1atTg3r17WFhYkJaWbgenqvrtSYPc uLeGhoZy6PARLu7Nv/LTyckpfImIxMrKSi6xQXZWZHKbHCUI3rp1i+PHjzNhwgSsra0JCwvL+A/S nRhKlSrF+PHj8fPz49ChQ5w9e5YePXooxHEl8uPBgwcUMzHizM6NGBrkT0336JhYFq7bQpHKtRg6 aQb28WFcbZb7Zu9fwiNo2mMgPZrWpUvjOhmv62hpcX/PWo4FfmGV94cs93eiQQUCAj+yYt/xbGva Myd9FifsXzlYZRRoVUDRuRGXgMuHT+wQp7JkYCd2TuzP5tG9GNeu0c8b5wIDVu9mxt7THNq1nbXL FmUrWNXR0SHq41u0tbVwrtsIe+ea2FR2pnw1V9x69MHD80Wuavb08qZDz76Y2zlw7PQZ9mzZmOM+ m9SvT2x8PHNXbaDHiPG8eRfA5tUreHDjckYADGBftiwHd23nzuXzmW60QZ8+Y1TYIEtjyWQyDp46 h1X1Bnj7+PHnts2kRX9hxOABOb6OnCCTyZgyZz4iNSHvvuR9cRaBQMCE5q5MXbKG5y998ny8/ERV VZXK5ctSxaEcKioqtGvagGJmpjw6fYBPnz5haWmJiooKQqGQChUciM1DFxMzMzOkUil1XfLPtWXx pu3Y2trm6yywopGjIPjChQsAzJ07l5o1a2b6LyUlBYFAwPr160lJScHNzY1t27axaNGijFwbeR9X Ij86dOiAz9uA9Dy7PEYsFjNz2VqKVanN7p17WVvBnA9tq7Kuuh0H3wbTvH7tXJsFvvPwCeXqtSQ6 Npb29b5OsTA3M+bEqjnMePoG9R1XcDr1kDcxCT/s00hDxO7a9szdtJv3n4K/Ov45LIIztx8i/ctJ 4ltccH8CgFAgQFcoZI6ZMSWzWHdeCUyLimFQq/q8272EPo1r0sK5Ah1qOaGqmvcbDVvPXsfhu0+5 e+U8rVs0y1Ffenp6uF+7xJqlC6lSqSID+/QkLCB9hjMuPj5HfZ+5cBE7JxfsnWuyY++f1G7aiodP njJ8YH8iP7zNsXaAkiUtWLt0EXNXrufP42cYMXgAg/r1znL7OjVrcP7aTZ54erF+577vnhcY9Alj e2e6Dh2LfiE92rRoTteObnlqgZcVvF+9pplbZ+6438emVEmG7D6D54dgxu2/wNJztxm3/wLbbz7h 0IMXpKRKcmXMXXc8WHf5Pr3bt6Jiud/DS7aSvR3SQC+8r5xk5cyJHFi/DElyEq41cz9t7m9at04v XPPmff7lyc5dvYlBg4fI/XMtT1RkMjk4bhcQgoKCqF+/PteuXaN48eLylpNtkpOTefnyJeXKlVOY dAiAkydPMmHsGDwvHc/VVIR/4+3zBrdBo0iMjmJ/dRucTTLbrlU994weA/sxdmDvHI0jlUpZtH4r i9ZvYaxNUXRFQuZ7f+TBrlXYWn69m9o38CNT1u/iwt3HdLcyY1ONn5eNHfHAl2tRSfic2IFAIOBz WATVu4/gY1T6MuWGSUMZ3L75N9ueunWfdhPm87asdY6u83fEPSGBHoGfSTi1CfU8LoYB8DkimqKG 6asjt718aTZzHV4P7mBVOvs2eT+jsHlpRg8bzMxJ2c/7dOveB+/Xr4mLi0ciTaNz+7asWbooF1X+ Q2JiYraqtiUnJ2NkYU1CYiIA0k++/3c8Befmbnj5+KFfqBDP7txATSSkTKWqPLx+mfLl5FfeOSw8 nGI25XGqYM/Q7h1pVLsGrm274xvwASeHcoR++YKpiQkxMTFERMVQTF8HfS0NQmLisTQsRHunctQr l56PnZqWhrZIRLHCP05D+xwVi+WY5WxdOoc+Hdvmx2UqLF/CIzBzrAOk57SKRKJcvbdKpdKMdAtp YM42QmeVVdv24BUYys7du/NlvL/5+33T19enWbNmco2xctUiTYmSX6FNmzYc2P8ns1dtZMnUsbne f3hkFE7NO9CuhBE7WlX55tNuMiDM4eawz6FfcG3bldiYWC43cMDJOD3Q9olOoOGwqTzbtx5jg8zB t42FOdumj8K4YRf6WGdtg9PSKlZUOHGffnNXsXP2OHafvUZodCx3rC0Z8DGYq4+efzcIlslA+J18 NiU/RlegipZIjVK9J3F18XjsSvx6Pm5WkEqluIxdwlPft5QqVoS53Vowec8pJo0ZmacBcGRkJCoq KliXKpmt9vsOHmbT9l08evqMp3eu4WBvn8sKvya7ZYs1NDTYsnYll6/d4PjpM5mOzV6xjrkr1wOw dukiRgwZmHGsXu1a1GjUjFvnT1OpgkP2heeAiTPmUKaUJXeP7cl47eWNMzzzfk0Vh8zL2YmJiYyY tQiJJI26JYqz8o9d+ITHMHb/BVLT0tBQU0MskVC/nBVuTmUx0tWmtq0lWv+3OqShJkQqk9G+acN8 uUZFxsTIkHvH91KjXQ+qV6/Ow4cPc7X/v+9PLerXztV+f0RNp8rsPrEg38ZTRH7fOXAlCsHadevZ ffQUHt6vcr3v2Ss3YGmgy65a5b673GMkUmPSwhU8fZE9a5j3gR+p2LANpKWhqSqgkuE/G8021yxL SZGA5qNnkfyNzTQ6mhpoqgk5Hpi1Sj2aQlUWVrFiz/nr7Dh1mcYulRHLZEz4FIpPcgpefu++2c43 MIiJa7eDTEacJI2RQcFszoHv8O9GeU0N7lkWJyE2gc3nbuXZONsv3eFN8BceXL9EZHwiE7cfISFZ zJRxo/NsTIDjp88C0LFdm2y17TFwKCUtLXjv/SxfAuCc0q1TB+ZOm4JYnErAxyBWbN7BqJkLWLF5 O5tXryAh9GOmABjg5IG9qApUOXrqzHd6zVvmLVnO/sNH2bl8XqbXBQLBVwEwpD8kbF82j92rFjJr zFBiXj8i4OF14vyekvz2OdE+j/n89BYpOvrMPnuPPttPYjJsESP2nCUyPn2W/JLXG5acuwOAODU1 7y+yAODiWBGvKyd49uwZFfLgYaiac1Ucv/H3zCvi4hPQzYF39n8BZRCsRK6YmpoyecoUlm7amav9 nrlygz1HTnDC9cc5bNcblmdEmaLUduvB7iMnf2kMbx8/qjRzo0ujWrw8vAUjY2PaXc+8jHW5YQWe vqCGlIUAACAASURBVH5D3cGTv2ovEom4vHERq7wCmP3s5z6TUSmp9L7pDcCABWtYtf8EhtpaPEhM 4sbmxfie2P5Vm6PX7lK2wyDeBgWjraVJRb93nIuNZ1lYJFXeBtIoKISRQcGES3Inf/C/THxaGhYm hfOk7/4rdzJpx3FGDx2Ms1MV7GzKEBody+Sxo/Lc1rB+7drExsV9d+f7j3j212a6C5evoKdbcJxG /N+9Q1tbi6bd+jNh3hKu3X2A+7WLDOrX+5uzzEKhkDHDh3D+8tV813rxyjXmL1vBsmnjvhnwZhf9 Qnpc/nMr7x9c5csLd05sX8+F14HYTFzN56hYdt3xYNVFd7q3bZ7lzYS/A+XKWDFpaD9evXqdo368 vLxQUVGhXr16dO/aFavSpXjw8BFlSuafbZi3nz92v/GmOFDmBP8QZU5w/hATE4O5eXEC3K/kqFSy WCzm1oMnxCck0mfsFOaXN2eQXdaqG514H0rnGy9IDfDKUjDw0MOTxl37M7JzK2YP6IaKigpBoeE4 dBnK1LLFGG2f/kMmlUrR3HUNgLcnd2BZ9GvfyUNXbtFz+jJWVLNlsN23P2dpUhlauzLfgP1PbMPU 0IDgsChKmxf5ZjtxairXn3hiX8oSY4NCTNmwiym9O3L46h3cX7zGwcqCKw+f4/X6DR011UkBrqfJ ME2T4ChS42WKmM+qqpSTyehbWJ+yeZS7rej0CwomsYgJVxaPy3VLtBfvPuI4fC57/thIZ7d2CIVC 5i9dwYx5Cwl954OJcd6WCfZ+9YpKNeqSGpm9cvKJiYlom5Vg9tRJzJoyMZfV5Q3JycloGqenIXk/ ukc5u59v+Hri4UHdpq2JC86bjUsPHz/l4ZOnaGmlVx8sXrQoL318mTZ3AYO7dWDVrEl5Mu7/49qu O2/fvkMoEFCjRnUOrF+aL+MWJLYeOMqgyXM4ffo0/v7+qKmpYWNjQ4MGDbLk3HL79m1q166NiooK bs0aUrWiA9UdKyCTgXOl8tl6IM0OV+/eZ876Hdx1v58v4/2NIuUEK4PgH6AMgvMPff1CvL1zkcK/ YJcmk8m49eAxZ6/eRChUZcvew2gIBWgIhdQy1GZbdZss93UnJIpGF5+RGuD10x+xa3fu07b/cKb3 68KEHu0zHbvy0IN2E+axtVoZ3EqZAdDz5gsOvQsFIP72cVRVBdz28Gblnyc4tHAyutpa7Dh1iQEL 1vK8rQt2BpmXpz4nJlPyYPqypGsle1KSk7myaRE62cyL/H9SJRJ2nL7Csj1HiYyNY+2EwTx57c9z n7fYW1lSrpQ5lx54cPWhB9pqQnabFMZWQT9HuU1oqoRJwV+4E5/A6TkjaVY195dAJ247zAXvAF49 +edGJJPJCAkNpYiZWa6P9/9UrlmXShUc2L5+dbb7GDN5GucvX8PXI3fzJPOS1z5+RMfE4OLslKXz IyMjMbYsQ2pUaJZ3038JC+PcpSuER0TQqlkTbKy/vzG1TZcenDp3AXvbMshkMt5/CEJVVZXpIwYy YXCfLI2XW3QeOo7Lt+7iff0MRU1zVqjnv0hcfAKDp87Dy/cN+np63H2U7r4zZMhgNm7c9MO2Bw8e pEuXLpgXNSPA/bJcikT9je/b99jVa0VaWlq+OkQog+ACgjIIzh+Sk5PR09Mj+e3zLP8g3Lr/mIGT ZhIWHkFFXRFxaTLG2BWnQ6nsBQ1vYxMpe/QesT6P0dH+flnhExeu0nPURJaN6s+gdk2/ec7SPUeY sn4XOkJV1le3o4tVESKTxVgcvkudKhUIi4rBwze9aEDVcjbMGtCVVmNm066kKQ2LFqZjKTM0/7VZ r88tb/a/DebO1mVUr5B3u9OlUiniVAka37FOS0tLo0a/8Th9CWOciVGe6VAkOgUFo2FehIkdm+ZJ AAxw5PZjuizagjgyBDW1vHef+DfR0dEUtynPmcN/UreWa7b6cH/4iGbtO1O5ogPXz53KZYWKQZ/B wzl59jzVqlbhwrFDWWoTFh6OU+0GJCUlUVi/EO8/BgFw5dQxXKu7ZDp3zaYtTJw+m/o1XTi3a0PG 61Kp9Le2rypI7D1+hslL1/L+fQDq6ur4+fnx7t07RCJRRiVdHR0d4uPjMTM2wvPSMYwN8ya9Kqv0 nTCTZBURBw4ezNdxFSkIVn67lMid0NBQTI2NshQAHz5zEeeWnWjZezAttCG4vTOXmjji3rxKtgNg gD1vPqOvp0vCDyqz7T58gh4jJ7Jl6ojvBsAAE3t24ODCycjU1BjywA+/6AQKa4h40aYalx88w8P3 LToiNcK618U34APtJ8wnTSZDXaDCwLuv0N9znRH3fUhJS/f9bV4ifTn8xM28XbISCATfDYAh3Vg+ WZyKservYyojkkqpaFUizwJggOZ/9f0jn+e84lNwCAmJidRx/cf/9EtYGAbmpVE3KsrL1/8UR3j7 7v03+zhx5jxaWpr/yQD4hbc35aq4cPbiJTavXs65Iwey1O7qjVuUsKuAiWFhQp7e5NW1U0Q8v0Nx M1OmzlmQ6W8dEhrKmMnTWTBxZKYAGFAGwAWI5vVqIZVI6NmjO7du3cLGxoamTZtSv359ypWxonOr pvR2a8X7e5f4/OSG3APg1NRU9h47TRmbrK+Y/hdRfsOUyJ3g4GCK/GTJLeRLGJ2GjKXfuKlUSo7i RYsqLK5aJtduEos93xMdG4dltQZY1WxMcGjm0qrrduxj2LS5/Dl/QqYqcN+jqLEhPZrVJ0ksptON 9M1DJfW0qGWWvsEkXpzKh/gkSEvDtZI9TmVKcTookok9OzCjfxf+eP2RR2Hp/r8t/wqC77/IfQeN X8XYQI8LCYnylpFv6KkI+PPaA/w/h+bZGI98AwDksixqZ1MGdXV1du//ZyaoYvU6lDAvjlgsZtWG TVy5foNS5R2xqujEw8dPv+qjfasWOS60oWj06D8Ym0pVca7bmLJ2tjy/d4tO7dtm+ffm3oOHVCxn w8NTf2a8pqWlhdfl4/j4+bFlx25kMhmrN2zGolwlrEpaMKZ/z7y6HCX5QGH9Qry+doqzZ89Rp04d WjWsizTQC2mgF15XTrB/3VLWzpmCRfG8sVj8VQ6duUhaWhpNmjSRtxS5ogyClcid0NBQTI0Mv3s8 ITGRlr2H8PK+O+5NKrGuuh3FdHI3rWN8eUs827oQ2dUVS2kKru26ExEVDcD8NZuYunglJ5fPpFWt aj/ty3XABGoNmMDmY+fS2zuWzjh2pVkVelilb2Lrcv0F2rq67Js/gQf71hF1+ziLhvdGRzN9Y0yF wum77XvfTneEOLx4au5dcBaQSqW8+fCJf2dMTe/XBe9cqkRVEJhXxBgtiYS2czb8/ORsMmP3cerW cs1U3je/EAgEVHNy5NFTDwCePfckODSUmi7OAHwM+kwzty7Y2ljTpGF9eg4a+lUfzzxfUFjfgC9f wr46VhDp0L03l6/fpF2rFrx+7M6RPTsoVvTbG0+/R2x8PKJvpLZoaGjQoEY1lq1Zh10VF8ZPn8XK GRPwvXFGOev7H0C/kB6fHl0j7vVDTm5bK285P8T3XQCVKlbExcXl5yf/h1F+65TIneDgYMz+L8dU JpPh4f2KKYtWUrp6I+JDQ3jY3Albg7zxNFzgZI2tgQ5CgYBz9ctjmpZMnQ49GT59Hss2buPSuvnU r5q1ctsdG7hSwsyEDZOGYWdpTrurnvhF/1MaeVstewI7uyITquFWvyZG/+eIMbJTSwBaX3nOtU8R HH8fyoOdqyhq/P0Hhbyg1dg52LoNROjcIqPsclRsPFKZVC5L9/KgsFDIYH09giOj86T/eX+e4f7r tzSuXzdP+s8Kvm/8qVU9/eHOwb4cZaxKs3HrDgAuX7/B1vVrOH/sEMMG9CMsPAKxWMzICZNp2q4T TrUbMHbK9PRqZaVtqVSjDm06dyckNO9mzvOKyMhI2nTuzukLF7lx7iSLZs/A0qLEL/eTkpLC46ce RETHfvP4nLFDEahAMRMjEnweMbRn55xKV6JAFNLTRTuXNi3nJe8+fKJipUryliF3fp/kPiUKy+ED B7hx+zbN6tSkZIninL16k20HjhIVFUNZPQ1mljFhQBatznIDgUDA9YYOWBy9z5/HTnNjyxIq2ZT+ ecO/GNGpFSM6tQJgULumCJ1bUPvCU4K71Mo4x0xLg/jkZL58I7g6fecRAD2szGh26RnNqjviVK5M Dq/q19hz7hoX3J9gKVIjQJzK2JV/8OlLBKNXbGasQaHfatZKWyCg0F+2VbnN7iv3ABg/anie9P8z xGIxkVHROFdxBNL9cGdMHEePgekzvlfPHKd+nfQKVsWLFSU6JgYtU3PMixejUb26ODs5MnX8GGJi YylpacGJM+fYtnsvjVq78dz9VoH4nEilUgaOGM2fh49Rongxzh05SFnb7OdJ7j14GB9fP15ePfHN 49YlLXhz61y2+1eiJDfQ0dZCVACC9bxGGQQrkSt37tzBx9MD5yKGDJk0k5RUCeZa6owtacTABnZy u4n2uPOKNFUh9/5Ygl3JX58N+pu52/ajp6XJaqevg2gDTXUOXr7FtL6dKVvqnzFuPk3PIR5y7zW6 mhqcWT032+Nnl+uPPQHYb1Gc5h8/4/fhE6OWbaKXng79DH8v4/yiakJCwyOJT0pGJxd9kufsO0Vw dBw3zp/KN1/Q/+fBoyeoCYWZZjwjoqIAuH7uZCbHiIoO5ZFEf+Hd+wBKlbT85nezds0ajB85DHNb B27fc8+04U5ReeP/lu17/uTQrm10aNs6x7nZm7fvomvrpsoCE0oUFplMxpU799m7P2sbPf/LKP5j upL/LCkpKQzo2YPVjiW53bQyH9o4EdrBhSfNKzO4bAm5BcCtrnpyLyaFh7tW5SgAvnj/Ccv3HONa wwp0Kv11TuGOmukG/U1Hzcj0+trxg6la1poihgZ4HtyY7fFzwqbJw6hRoSwNPnymv642b2xL41W6 BBNNfw9rtH/jpK2FhlCVnZfv5lqf4TFxLDx4niN7dsg1UKxWtQoyZNy888+1tWraBDU1NWrVqP7V +QKBAKvSpb773Vy7aQsOLrUoVqQINV1+nj+vCNiUscbUxJg3b9/lOAC+436fV75+tGwov/QWJUp+ xh/7jxAaHvHb5wODMghWIkdWrVhBGWEabSy/rqImD6RSKXUveuAnEfBo92pKFsu+5ZpMJqPnzBV0 L2mMg+G3y8lWMkzPBVZTVc20+UwgEHB/12qCLuzDooh83htNDXVub13G5mkjWBYWydnY+AKxtJ1X zNQvxNQdx1hy+DyxCd+30csq+288RFtLi2aNG+aCuuwjEonQ09Vl8qx5Ga8VK1oEiUTCh798bbNK QOAHRk2cypRxowny80YoLDgLjQd3bWPu4mUkJCT8/OQfsGTVWlrUc6Ve9aq5pEyJktzj+IWrtOw3 glmrNnP06FG5rUApEr/vXU2J3DmweydjyuR9RaysUv/qC6LUNXmwa2WON6EFh0cSERPLmmpf5xbG iiVMe+SHT1Qc48tb8v5zKL6BvxZw5BedG9aiR7N6rI+Jk7cUudJaX49lxobsOHYZ8+7jWXL4Aini 1Gz3N7BZLSQSCYePn8xFlb+ORCJBv1DmKo0ikQgH+7LMWfRr5XKPnz6LdelSTBg1Ijcl5gtVHSsj SUvLUTGhl699uHn3Xr6VN1ai5FeQSqW4DR5DucpV8X75kmbNmslbkkKgDIKVyAWZTMart+9xNNKT t5QMVFFBXSRCS0M9x33def4SgUDlm7Onba+/YLl3IE5nHrPFN4iixobYWChmRcL+89dy7No9eup+ v4re70LTQrpcLl6EDcaGbDp6kTJ9p3DpqXe2+tIQiehYszLT5i4gNTX7wXROcajmSmRUJBtXZg54 q1etyv2/SsFmlc/BIRgW0DzYbv0GI5VK2fXnAXb/eZDo6Jgst01JSeGN/1u69h1IpXJ2yjLDShSS y7fdAWjVqhXGxsZyVqM4KINgJXLh1KlTSNLSSJCkyVtKBhcblCcxIoJ2ExcgyaGuelUqIJXKuBoU nul1qVTK3c8RHFkylfb1XbGzLs2JZTPkWj/+R8QmJNBEQ0T3wvo/P/k3wVVXm1vmRWmvIqDz/E30 XbETcTa8k/8Y3YuI8HDWbd6aByqzRtCnzzg5VqZShcwV8e4/foKfvz937mWtSqFEImHXnwdoULdO HqjMW6RSKYEfPqCtpcWCpSsYOm4CBiVKo6JnRHhERKZzZTIZ/m/fceTEKRavXEPLjl3RK1aSSq51 MTYoxM1DO+R0FUqU/JiGri4snTqOpk2byvXBW9FQBsFK8h2JREIHNzcO1nPAUCP/CwR8D6FAwMNm lXjp84b+C9ZkytP9VYz002e417/6yNbXHzN8dW+FpO+8r12pPPvmTeD+zpVUKWudc/F5wJfIaC66 P8G4AOV25iejTAy5ZF6Uqw88aDlrLUkp4l9qLxAIWNK3HQuXryIxUT5V+G5eOM3tu+5MnDEn0+un DuylWeMG1GrSgk+fP/+0n5SUFGLj4khLU5yH2qywZOUa1AxM+fAxiKv7t/L2znmivdzZMH86AMEh 6X7Hn4ODGTd1Btpm5jhUr8WE6bM4eOQIxnrpVeDiXj3kyp9//NZ580oUG1VVVcYP6k2dalXo37ev vOUoDMpvrJJ8RygUUtG2DIXVv66oJG+0hELuN6nIuVsPqDdkCknJKdnq56G3LwAXgsIZft+Hpte8 AKhtZoBQVcCmY4rvE9p56hJsNNQZayzfGveKjKmakEvFi/DePxDXcYsJ/8Xc6QFNa5OclMSxU2fy SOGPqVyxAldOH2fTth1MnTM/4/US5sUZOWggwE83z0RERBIbF0elCg7cf/Q4T/XmJtPnLmTWwiWc 3r6OsOe3ca6UPhsuFAoZ1K0DAPVbtqN15+5YV3Lm9NlzLJs6jqgX93h/9wIe54+wfdk8rEtayPMy lCj5JfatXsSeffuQSH6fyp8/QhkEK5ELfQYNof8Df56GZz33Lr8w09LgUbNK3PXwRqdWO/ZduP7L fRQxKoxpYQOGdWhJzxYNeJeQHkwLBAKcjfSYtWVfjmaa85q4hERue3ix28wEoXJ264doCQRcKGZG Qmg403d/u0DC9xiydg8JSUmUsrTMG3FZwNnJkekTx7FoxWpOn7+Q8bl0rFgBkUhEt36DCAj88N32 dlVcKGpdjkdPntKxXZv8kp0tkpKS6Ny7P7pmJViwbAUrZ0ygWb1aX50nEAi4emA7TWq5EP4llANr l+B36xxDe3aWS3lrJUpyC10dbezKWHH3bu5ZPhZklHc3JXJh6IgRrNy6nVY3X3PgbbC85XyFuY4m A22KASDMho2MRRETPl/ch72VBUcu3+ZgjXSXiJDEZDxjk1k1bpDC5gEDnLh5HxNdbXSFSgudrCAU CFhpbMjOS3cIi876bPCJB540a9SQGi7Oeaju50wZP4b5M6fRte8gylSqysvXPhgZGfLJx4u37wIo 7eDIqvWbvpka8dz9Jr26dQEgNPRLPiv/NS5fu8HpcxdYMX0cs0YPoU+H1t89t171quxetZC7x/bQ smGd/BOpREkeY2dVik+fPslbhkKgDIKVyI327dtz4dp1et/yJizp1/Ip84Ndb0MAWLL7CGlpad+0 xIpLSGTdodNERMd+dUwmk7Fy33FG2BbF0TjdE3jus3fEJyUzomPLvBWfQ2Zs2oObSPHSVRQZW3UR IqGQrou3EBL59QqHb1AIA9fsxn7gDGqMWUS7uesJj4pBV1eHUROncv3Wbbbs2IX/23dyUA/TJowl NjgQcaoEe+eazF+6AiMjQwJeejBr8gSWrV5HCbsKX3npFi1ShG3rV1OsaBGee2XPLSO/KGJmipqa GgO6dmDWmKE5skRToqSgkZiURPtBYzl+/jIODg4/b/AboAyClcgVj2fPaFiqGMaairfEeKFRRbza Vef1+w+IXFqhVbMNPgEfAZBI0vD0e4d+3Q6MXrEF596jM9rJZDIOXbmNrdsA3nz8zIiyFryPTaTE 4Xts9/tE3SoVFHoWGEBNTUh8mlTeMgoUAoGA0+ZFCXofRLmB04lPSgbg0lNvOi/aguOwOdy++YjK cQl8fveBe89eY6AqwP3GTY7s3E2n7n0YMno8fYaMyNdUmacez+k7ZAQu9RphUtKGL1++0FpPlxnz F7Fk1VpSU1OZOXkC186eQEdHm1UbNn/Vh1Ao5Ma5U1y+doPrt+7km/ZfxdTEhKTkZJKTk+UtRYmS fOVz6Bca9xiMVmEjAgMDKV++vLwlKQTKbd9K5EZaWhqb1q9jYBHF8Qr+N9VN0z1P/d2qs9r7A5te f6Rcx8E0dnHkkbcvUXHxqADTKpRkvud77DsOxsRQn1tPvTL6qGqij75ISOkjdxGnpbFwWC8m9HCT 0xVljXefgnn/KYQBZkovyV+llLqIi8WLUPPDJ9rP20j9inZM330cV01Njhcvgs1PPKhjTQyo5+XN 8HGTWDZ/NlpaWnmq99zFy7Tv1gsHVQE1dbQYpqtBRRMDtAQCHCLUmbNwCVeu3yAmLp4nzzwAmDFv IfVquVKtapVMbgjWVqWpX7c2W3ftpl5t1zzVnV0sSpgjEqlx/MJVurZtIW85SpTkC14+fjToNpCh w4Yzc+ZMpYvJv1AGwUrkglgsplsHNzSjw2hu/3VVNUXCTEuDxVXLMLeyFTXPPuLS/aeoCVUppavB u7hkDrwP5ZVbDRpf8sAnMIhe1kUZYFscR0NdBAIBm199QJyWhs/RP7AuUUzel/NDwqNjsO84BCdt LTopvYGzzV5TY2b4BbDKL4Dpxkb0Mszae6knFLLPxIA2u/awcet2WjVrwrL5cyhjbfXVuRKJhANH jqGpqUlsbBxlbctQraoTANdu3kIqlVKvdq1vujvIZDJWrd/EzPkLGWegRz/Dr4tc9DY0oJGuDg0e PCIlJbNLSuPW7YlPTGT1koX8eegIIpEILS0trly/wZxpk7N0rfmNVCpl1MSpJCQksnHfYWUQrOS3 4NTl6/QZP5P5CxYwbNgwectROJRBsBK5sHfvXm5du4p/exc0CsjmK5FQwKM21QhPFmOkIcJgT7pr xNvYRDzCY/HvUOOb7db5pm8mKmaSs1LM+YEKKqSkptJUGQDniJLqIvZZZO+Bx1ZDg8clzQmVSJh9 +w6OrvU4vGcHTRs1AMD71WvGTJ7Os+eeSMVihEJVtFVUCE5IZNrEcYwYNIAmbTuiAhQubMDsqZMZ 3K93Rv/BISHMXriUQ4ePssnIgBo6368GWFSkhipQWFuLHSaGFFMTkiKVUUioSkW/94yeNJUObVuj oa6OJE2Cv+cTSpcqma3rzmvOXrjE+i1bcWvWkFljhspbjhIl+cIjz5ckp6TQoEEDeUtRSJRBsJJ8 5/79+4wfM5px5UoUmAD43xQWCal94Sm6erp4bF2GTfsBdLvphaZQQPMS/5RMbXr1Bdc/hKKupkbU 9SNoFYBNOIb6eswd1IOZW/bSRE8HUzXlT4Q80BWqoitUZV+JouyPjKZ1p26sXrqQW3fdOXz8JJoC AQvNjGlVxCijzb34BAavWM2sBYspbWDARdPC7ImKYfyU6ejp6tC1oxteL19Rr3lrpMkp7DQ2oIKW 5k+1eJYs/tXyqVgqRV1NjeWL5zOkf8Ew3l+3ZSuNalXn8KaV8paiREm+MX/8cGLj4pkxfRqHDh9R +P0o+Y0yMURJnpOYmMjq1asZPmQwtpYWdG7RlA2OJZloX0Le0r6LVCrlVVQ8id8wFLc96s6D4Ehe HdmClXlRom8cYfaArrS76sneN58y2l//kF5tamIvN+56vsxX/TlhWr/O2Je2ZH9UtLylKAG6FtZn upEBw8ZO5Nz5i3TS18PbtjSt9DPn0tfQ0carlDlvbEtzuYgRAoGA3oYGjNPToVu/QajoGuJQzRXb lGQemptlKQAGvpk/2PRjMIkpKfTq2jlXrjE3kclkGRUa/0YqleLl/Qq3Zo3kpEqJEvmgoqLCwokj cb93l7lz58pbjsKhnOZRkqckJCRQp3o1CAuhVVEDdlUoQkXDMggU/Gl0uLsP2/3SA9rbLaribJJu cfY0LIbA+CSGdWiBvq4OALraWswY0A0P33fMe/GSHtbFEAgEOBkXwiMyjqW7jyCWpLFv3gQ6N6ot t2v6FYqZGBIXGSVvGUr+onthferqaGEsFCL6yaaW/w9aexnqU0Nbk5g0KVHSNBr89bnNCfaqAoSl Sub5xr1f5fkLL1p36s6HoCDEkSGoqaXb/H34GER0TAw92yu2NaESJXmBro42Fexs0ddXprn9P8qZ YCV5yqtXr3jywpurDR2YVMGSykZ6Ch8AH38fwsEP4eyZOx6A04HpBQDEEimtrnpiZmjAmvGDM7WR SNJ4G/QZF8N/Aoy7LauS0Ks+sT3q0rmkKUMXb8i/i8gBMpmM2IREFPuv9PtRTCT6aQD8Paw01HHU 1syVABggQJyKfVm7XOkrt7h64yaujZpTvbID2lpaLFuzPuPYm7dvSRGLCfykeIV5lCjJS+LiE5i1 cgPnr9+ievXq8pajcChngpXkCVKplICAADw8PDDV00EoKBghVcvLz7kcFMbGycPp1qQuPWcu50zg Fzb7fCRRIkUqk3F87gSe+fjjaGed0W75vmOEh0ews121b/b7NCaJ5jWr5tdl5IgrDz145R/ApuJF 5C1FiYLiqKnBvVeviYqKxsBAMWaX2nXtRW1nR/avW8K2A8cYOHk2Xt4vefrck8CPH+nl1prSFuby lqlESb7yx/6jbN5/jKtXr+Lk5CRvOQqHMghWkidYW1nx7v17APbWKY9aAfAlfBOTwOWgMC6tn0+D qpU4cPEGAL6xiQBUKFMKT793dJ6yGLFEgkt5W65vXkxYVAzTNu7marMq38yffBERR2BsAksa1MzX 68ku91+8xhqUJZOVfJfJpkZUffuBmQsWs275YnnLQSqVkpySzIRBfQDo36U9l26789zTkz5u4tPt /AAAIABJREFULWndqB52VqXkrFKJkvxn+vK13Lx5i2rVvj1B87ujDIKV5CoymQy3Nq159/49/cpZ stHZ+ueNFIRi2uoY62gxduUfPNi1iu4zl2Opo0FAfDJCVQFeb97jVsqMP+uUJzAukfInHmBQtyNC 1fTAt5z+11ZTIYnJNL7mxZhu7Wjp6pzfl5QtUlIlCAvGxL0SOSESCDDV08XGurS8pQDpedAd2rRm zppNXKu2HYAjm1bIWZUSJfIjJjaOvuNnkJIiVs4A/wDFn55TUmCQSqX079OHKxcvMtHBkjVOinGD zCpaQiEf3Fx4+e4DurXaY6KrxdM2Lsx1tGJsuRI8bVONP+ukl5q00NUisnsdNlcrg62OiN5lilJY I3Pp5zshUVgcvEM950rMH9KzwFjT1K3iwCsZ+Can/PxkJb8tApkMLU35b4xLSUlhyOjxHDh6nP6d 28tbjhIlCsHiTds5cekaJ0+e/GbBHCXpKGeCleQYqVTK7du3WTBzBlHv/PBoUw1zHcX3xP0WAoGA GmYGfEpM4U4zJ3REQiZV+Lb5v1AgoItVEbpYfZ07u/D5Oxa+CMDZ3paNk4YVmAAYoKFzJQZ3aEmz 3YcRqQkppKlJaWka5UQiBhgZYCxU/mwoAVWxmFkLFtOuVQv09QvJRcOde/dZuGIVXt4vuXFwB7Wq VZGLDiVKFI0BXdqzed8RHBwc5C1FoVHezZRkG7FYzKoVy1m+ZClmWiJ6lzBkSMPyCAtA/u+PuN4s ZzfS/f7BzPN4x775E+nUsFYuqcpfFg3rxdTeHUhJTeXpa39O3XrAPc9XHAsK4allcXnLU6IA7Cpq grPfe4JDQvItCE5OTmbu4uV8/PSJBnVq0XvwcCral8Xz4hEKK+2flCjJoFQJc7q2acbsWbPYvWeP vOUoLMogWEm2cHd3Z2CvnpjLkrlY1w57A50CNduZlwx94Mu8IT0LbAD8N7raWugCjV0caeziyPXH nnSYOF/espQoCEb/Y++sw6JK2zh8z9ClIAahIiCgYiuKiYEBtmJju2uta8eqa63d3bp2d3e3YoGB ggrS3TDMMPP94a7furoKMsMQ574uL+XE8/7A4ZznvOd5f4+mJmKxmDRJzpTNBAUHs3PvATb8uZWi Jibs3LufUQN7s/j3cTkyvoBAXqOifVmOXrmjbhm5GiEJFsg0MpmMgwcPsmnVSryfPWNpDWs6WVsL ye8/eB2XTGq6lM6uDdQtRelsO3WJpNQ0mgWG0MtAn96mwsxbQSBOJuN4fBLdTAp94VNsoKtLQOAH qlVR7SvXR0+eUrtxc7S0NJk3YSTD+/UkLS0N3TzQilxAQF1ULmfP2t2H1S0jVyMkwQKZQiqVMnrE CC4f2s8oBzMOtK+FgZZQbP9PnkUn4nziPrUcHbDNhx67Uwd2x6V6RXaevsyC574cTEpimVlxbHS0 v3+yQJ5lQUQ0++ISmBEeiZ5YzE9FjJGhIEImIzElhdpONVSu4fnLV1iVtOTNtZOftgkJsIDAtxGJ RLwLCCA+Pp7ChdVTt5/bydvFmwI5RtuWLTi/bzfnm1akt52FkAD/g4R0GfVPPqTW8Xu416/FlXXq 901VBbYlzenftjmX183jz2mjeZ6cypH4BHXLElAxYVIZro1duHXhDOUqVeRi0WI8srYlqKw9e7du wtzMTOUaEpOSkGXIVD6OgEB+ok6NKlQuZ8eCBQvULSXXIswEC3yXN2/ecPbyFc671aCYnjDr92/c zj3iUVQCvVo1ZfOUEV9tmJHfqF6uLAAdChdSsxIBVaMnFoOmJnWda/Ho5hW1aDAuXBixKP//XgkI KBORSMSaWVNw6zuMWbNmIRKJkMvl+Pn5cfv2bSwsLGjevLm6ZaoVIQkW+CYPHjygnVtL1tSvgIt5 EXXLyZVYG+ryMDKeoR6tCkQCDPAhPBKAMlrCJSS/U0RDjNf7ALVq0NPVJT4xkfT0dLS1hQdxAYHM Yl3KkrDwcJYsWcKunTt48fIV5iWKU9jIkKiYWBo0bMjGTZsxNDRUt1S1UDDu2AI/xN49e3B3bcKK qqUYYG+pbjm5lkW17QEIiYxWs5KcwzcgGGN9vQKT9BdkfjcrRkhwCAOHjVCbhiYuDYmJjePctdtq 0yAgkBMoFAp2HD7B1gNHlRKvkJEhO5bNxevGFaYPH0jUk+u8vXGax6f38/rqCbQzJDRzbUpkZKRS xstrCHcwga+yft06xg0bwpnGFWlrVVzdcnIVJwMiMNt1lWZnvEiXyZn95B0ArerVUrOynMM/KBQr FOqWIZADaIvFrC5qzN6D6lllfv+hF137DsDe1hq3xvXVokFAICdITkmhTf9f6DNqEks371Ra3J4d WrNrxTzauDbCQP//XR71dHXZsnAmjZ2qUr9eXQIDA5U2Zl5BSIIFvuDMmTPMnfwbp5s4UtnUSN1y chU+MYl0ueKNcVFTrofGYL73OhteBQGgqZn/FgvK5XKSUlKJS0zCPyj00/Z7Pq9IkmUgl8vVqE4g J/BJTWNRVAwpqalcvnY9R8d+5vMcl5ZtSIyL4/6x3WgK3QoF8glpaRLmrNpI+SZt8fJ+DsDC9VuJ T5MREBBAUGg4QaFhKtchFouZPW44g7t3omGDBty7d0/lY+YmhCuKwGds3rSJKRPGs6GmNQ6FDdQt J1cQlZbOkJsveBqbREx6BoM6ubNy3BAevfJjz7lrdGxc99NCsfzGrM17mbFx16evf+naluVjBnHz yceLdoJcjrFQEpGvmRUVi4mDLU7SDFzbdOTiicM0ccmZRjDXb91GQ0ODm4e25ch4AgI5wY37XgyZ PBv78uWxK1eBZp6DMC9ejOTkFBYsXkLp0qUZPWYMXYeN59Lujejq6qhc08gBnigUcpydnYmLiysw lmpCEizwifFjx7Bw8RIuu9eknpmJuuXkGk4FRnI88P/1UjMHeQIfHRLya/L7N52a1GP+tgNcLG1B gFRKz33HeeLrj562NitKFMVYmJnL16yNjOaZRMLdkQOoZGuFbeehPHnmk2NJcHhEJEaGwsO4QN5H Iknn98Wr2HfyHCmpaaxdtw4PDw9EIhEKhYIzZ85w8eIFOnfuDMCkSZPwfvaUniMmcmDt4hxZfxEV G4dr0yYUKlRwXH+EKRwBPnz4gK6ODgsXL8G7U10hAf4XpjpaAASd3kHG/VOYFCo4JSKOtlaUty7N xuhYnA300RaJuPnkOXssS9DESEhO8jPB6emsjEvk4OzxVLK1AkAql2Nhrnpf4L9ZsGwlndxcc2y8 72Hl7Ip778HqliGQy1m8cTvdh0/A1/8dGRkZjJo5H32Hmvi8D2bj5i0EBQfTuXPnT91WRSIR7u7u LFmy9FOyKxaL6dqtO2ev3SQ5JTVHdD9+/or2HToWqC6wQhJcwJFIJAz+aSAl9bV527UB9kIJxBcs ex5Il2YNMS9asCzi1hw4hWbt1jz29aOrycdXY7PNi9PKxJhKekK3rvxM27eBNPQLwLOlC251qn/a niGXo6GRc7Xv7i2acfJSztYh/5P09HRe+r0FIC0tjQ+h4Zy9douAD8Fq0ySQu0lPlzJl4QrC4pOo 26k3WjZVWbV1D4cOHeL0mbO0aNEiU90OJRIJY0aPZvuSOTn2NsTK0hxfX98cGSu3ICTBBZjQ0FBq V6uKv9d9zreohqWBkNh8DdtCeuy/cB1JulTdUnKUC/cf4aijjXc5Wxz+qknraFyIFebF1KxMQNWE a2oyb2gv1k8Y8tl2DZGIazdv5ZiOzauWExAUTN/Rk/H1f5dj4wIcPHWO0s7NcGzajhJV62Ph1ARn R3saVa/IvLWbc1SLQN5CIpGwbNlyoqNjSElJIT09nQ4dOmRphnXLli1YFDelYw6+Cblx34vnz31y bLzcgJAEF1AUCgWeXTrjmJHEkzY1KSkkwP/J2rrlAXgXovqVurmJNImUWvp66AsL3wockowMtL9S 721iZEQpy5zzDC9SxITzxw5y6fYDyjdpy5Z9OWPTduvhY7oNG4dns3r47lnBhvGDGN6xBWcWT6ZU 8aKER8UAH91Tth08xrhZi7hwQ/AwFoA37wMwMDCgcuXKiEQi9PR+zE99yeLF9O3UNkdLE1zr18Gs RM6VO+UGhLtbAUOhULBr1y4a1HIiyt+XeTVsEBeg+p8fQSwWo6khJiE5Rd1ScpQq9jYcSZMINmgF ECORiNjE5C+2R8Yl5GhNMECzJo0Jeu1Du1Zu3H+SM7NU56/dwq60BQuG9sLW0ow29WoyrX8XjPT1 ePjKj8Z1nLh08y7FqzZg8twlPH3yhBaegxg1Y36O6BPIvdiWLoW+ni4XL17MVhxHxwqkSSRKUpU5 vF+9wblOnRwdU90ISXABIi0tjRHDhzNj5HD66qVxp0UVSuip3nolPyAWidEqYE4IU/p3JT5Ngkzd QgRyFLlcTjLQoGqFz7bHJSYRER1NN4+OatFlYGDAh9DQ7x+oBLq0acm74HBeBXxZ+1vN3oYR0+fh 3mcwM/p3JuDQWs4unszZJVNYvmUnJZ0aM2TSTGQy4TenIKKpqUFsXDxJSUnZilO/QUMe+bwkLj6B 8XOWsPLP3UpS+HWevfTl3hNvWrRoodJxchtCElxACAoKwrVhA16cPsIF10r0trNAU3jNnWkK6euR Li1YNcHP3wZgamiAtvA5KVAsiIwmTSqlYZXPk2DbzkOpXqUyWlpaatEVERlJQtKXs9OqwNG+LA2d a1KlzxhksozP9i0Y4snNtbO4t3EeQzq0+PS62rVmZcJPbKZ707qs33WAK3fu54hWgdxBdGwckxes wKVrf6pXq0r79u2zFa9FixYcOnuR0nWa8+xtEFOXrqFR1/5sO3hMSYo/Z9uhE7i1bIm9vb1K4udW hLtbAeDK5csM6O1JBz0ppxpVwFxfmP3NCmteBBKVkIiDVUl1S8lRPoRHYaAhXCIKGtdlGfzUrvln HRBDomKIT0pm3zb1LQiztbYmJTXnXg93ad3yLzeMz38HzEyNcXa0p/JftnH/xLSwEfOHeFKvcnm6 DxsruEgUIF76vWXu6o307DuA8xcuZtvXt1KlSjx86MWfW7dy7vx5goKCcGnWkn5jphATF68k1f8n PDIaewcHpcfN7Qh3uHzO5cuX6du9K3vqOTCuYukC5f+nLGIlUkqbFcfYyFDdUnIU+9KWRKamkSC8 1i1QKCTp8K/LRBHDj5990yI/bhOYkZHx/YO+Qa9uXQgOj8hWjMxy+MwFxsycz5Jf+/7QNXPfjFHE xCeybtd+FagTyI3Uq1mNcmVtiImJUVq3NXt7ezw8PAAwNDRk5syZdO3SmTF/LPrq8alpady478XN B4+QSNKzNFatqhV57u2dbc15DSEJzsf4+/vzc9/eLK9hg4t5wfK4VSY+sUnExCcQm5BIZKzyn8Bz K8/83pGcJuHsVxZICeRfUrW1MS/yecOcCw+foqGhgYmJcZbjeT1+Qu1GzdA0Ls7FK1d5/caPk2fO MW32PNLS0jIdJyExEblcwdzVm1iycXuWdXyPtLS0TzW9A8f9zoKhvfjVw/2HYi3eexxdHW26t22l ZJUCuZH0dCkteg1GQ1uHYcOGqXSsOXPnse3g0U9fe796zbOXH719F6z7E5fOfRkwcSZ69jUYNXMB b94FABAQFELfMVMYPm3uVxc7Hz1/hbbZLOHIiwhJcD5FIpFgb29PfzN9OlqXULecPE1oigTL4kXx mDAHsxY9OHr1DpGx8Vi37UeTwRN59MpP3RKVwpnbD/l59gpevgtEKpMxZulGppUoRheTgtFDXuAj +unpPH7zuSdv7Qp2ALx99z5LsULDwqjZsClFtBT86uFOu26eVK7TkAFDh7No+UrcO3UlJiYWgDd+ /rTp3J1REyeTmvr/DlkZGRlMnTUPD8++xMXHs2rzdsbNXkT9Dp7I5XKadO2Ha4+BBIWG49pjINOX rOHctcx7GUdERTN08h9Y123BgtUbGNyuGeHHN/NT2x/zZ01KSWPnuesM7tWVyhUKVn1lQeXKnfu8 CQjiodcjimTjbUlm0NfXB8DcqQl2Lq2o2tKDqi092HrgKOt3HWDHjh28fuPHixcvCI5Lxrm9J4Mn zaR6q66YlrLhyr3HuPcdSnxCIvAxgb948w5Xb9/DxcVFpdpzIwVruXsBQltbm949unPu+iWGls9A XzPnujzlNx7HpZAWEY9vQBB6mhp0mzQPy+KmxMfG4Z+UiFPvEbSsU5NTy2eoW+oPc/nBUzqMnUlp TS22nbyISASWBgb0Ns36zJ9A3mVrdCwfFAq2dm/32fbiRYyxLWXJ/KUrWL9iSabjHTx6HA0NDY7P m4BYLGbJr30/7fsQHkWz0bMoYVsOkQgUCjA3Neb8pStoaWmx4I/pKBQKnJu0wOf5C5b92pfWdatj ZmqCl+9bav80EdNKdYlPSsa0kBG29VtQyECf4A9BLN24FX09PVq5ujBn/AiKFzVFJpOxYO0WFqzb gq1VKbxOH2DSguWs3LITTbGYoZ1aMsLDnaLGhbL1M9x88hJa2jos+X18tuII5H4UCgUh4RH8MnUO np6emeoEl13MzMxISEjA29sbLy8vunXrho+PD02aNGHM6NF4enoCUL58eQ4cPISvry9r167l7Llz 1KpVi/R58xg6dAjdho/n4NrF7Dl2hp8nTmf06FGULl1a5fpzGyKFQqFQt4jcSlBQEE2bNuXSpUuU LJn3FkXJ5XL6dO9G6P2bHGpYHj0hEf4hqh+7x/PoBB60c8bGSI/JD9/gm5DC3saVMNbR5uDbMHpe 9cZn31rsS1ty9NpdPoRFMLJHB3VLzxTxScmUadOXgfq6DCtmSoJMRoBUhqOOdrYXdwjkHcKlMpoF hrB4RD8Gtm32xX7/4FCq9RvH/asXcSxfLlMxx02exoWzp/HaNO8/j3nw0g+5XI5T+bKIxWKGL9nM Re839OnZjQNHjvPu3Xv89q6gSKHPa/KTUtK48ewlDauUR19Xh8i4BIoWNkIsFiOVyThz5zGrDp/l tvcrypS0JDQikmLGhahb0Z7dF25gZWlBdEwsG8YPon3DWkr7rLebuADdwsYcWLdUKfEEcicSSTpW dZsTERXNTwMGsGHTJrXqkUqlmXZukUgk9O3Tm8uXLxMRGcW2bdvo3bu3ihX+n7S0NJ4/f46xsTHu 7u5qzbGEJPgb5PUkGEAmk9GjswfRj+9x2KWCkAiriKbnHnMzOOqzbRn3T6lJTdaYtGYb+w+f5mJJ c3VLydfEyGQcikuklLYm9jo62Ohoq1sSaXI5z1Ml3E1JYXNSCq7O1dgxdQTa/3EzrdBzBD09PZk6 cdx3YycnJ2Nh78j8n7tnqbQgIjaexiNmkCEHl0r2LB3RF/1szLAFR8Zw8ModqjvYUL9yORQKBTvP XScyLoHOTepSukTRH479bxQKBVouXdm6ZDa9O7VVWlyB3Mf1ew9pN3AEJ06exMnJKUdmgZXN06dP 2bdvH7Nnz87RRfNCEpxHyA9JMEBSUhKd27VF9s6XQw3KoSskwkrHPyGFMXd9ORP0/0RYdu9krnbj UCgUHLp8i37Tl7DTvBhV9PXULSlfcjc5hbVRsXhJZVgUK0JMQhLxycm0NDSgm3EhnPT11OLFHJye TssPoYAIYyMDhnu4M6pb28+s0f7N/J2HWX30EsFvnn83/rmLl+nYozcJ57YpUXXuxudtILV/+o1Q r6sYF85eWYVA7iY9XYprj5+IjE/gydNneTIJVhe5KQkW3nUWADQ1NZk+Zy4mVZzwuPGKNFn2rIoE vsS2kD597CyAj9ZiNzYtzLUJsEKhYPOxczQbNpmBM5cxzbSwkACriDiZjMHhUWjYW3N66e/47ltN 5Jlt3N+8kATr0gyLiqX8K38aBgRT/vU72gWGsDYymqQcaFU9ODiCFs7VSbi0m8CjGxnn2eGbCTBA +wa1CY+MID4+4bvxy9nbIZVKC1Tb7dvevpiXKCYkwAUAbW0txg3uS2JiorqlCGQDYWFcAUFTU5PJ 02dQtWpVnjpaUru4sOBJmZwIiMDz+nMWjfyJUT1yl81MeHQsJUw/Wl4FR0TRYvgU3gaHUQoRV8tY YlzA2kHnBDEyGTPCIrmbLqWMpRkXV8z47KGoqp01V1f/QUZGBv3nrMaulDkNqlRg9/nrLDpxkU0p aRhoadJYLGKGWXGl6UqXy9kaE8eZxCQCEHH8lz5ZOt/ByhJTY2OWrFrDjMkTv3lsqZKWmJgYM3LF n6wYOSA7svMMNcrZEhEVrW4ZAjmEW6P6hISGIZVKhZngPIowE1yA2LJ5EyIQEuBsMOGeLzpbLpAu k3MyIILmpx+y7XUw3a/60K9tc0b+a1W9ulm+5xgWbp6sP3wGhUJBs2GTUcTF0czcBLlYJCTAKiBB JsM9OJwwCzNG9O7E2aVT//OtgIaGBtt+/5UpfTvjUs2R9ROGkHhpNwfnTmDm0F7sS0hmZFCY0rR1 Cg5nVUISlRo6c2v9XMqYZz3Bnty7AwuXraR+M3f83360UktP/9yYX6FQcOvOPSKjovH2D1SK9rzA g5d+SNILVnv1gsyTF76YGBujoSGUGOZVhDtgASAxMZFZM6bz6NFjfqlso245eRb/hBSWPf94Qzfa funT9mthsThXKs+6335Rl7QvUCgULN55mBkbdjGtui2jFq/nTWAQYVHRvG5fi2SZnAoHb3EwLh4P Y8EHWJlMCI1AW1+PK6tnoqeT9Rblejo6NKpeEYCqdjbUH/wb9T+EUhkFY4sXxUZHG7lcnmk3g3eS dMaGRvBSKkVLS5M3B9ZSPBvez8M6uVOvUnn6zVmFY616WFqY8/bde66fPcnjZ884duoMV67fREdb G/c61Vkw1POHx8pr3PL2xUAoLSoQPHz2nFptujF16lTBRScPIyTB+RypVEqvLp1Jeu2Dk6E+86pb q1tSnuWXWy8BCDq9g+TUNGwszdh55gr9Zixh+s891azuY+KbkSEnNjGJvtOXcPfZcw43dqSxhSkX w+JZuvsoWxtWxFhHG2MdKG9ixKOUNCEJVjKNDPQ5HxaJJF32Q0nwP6liVwb/g+s4cu0up2570fzO o08djUUiEa/L2X52fJRMxoPkVBLlctLkCjYnJBKdIad+1fJM7+SOSzVHjJSQpFW1t+bx1sVExSWw 4dh5XrwriYtbG8RiMb1aNOT66j+oU7HgNYoY060Nx27cz9JDikDexKJEMYwMDalRo4a6pQhkgyz9 lkokElq1asX169e/2BcTE4OzszMBAQGfbZ81axYODg6f/Zk9e/an/b6+vnTv3p0qVarQpk0b7ty5 89n5qt6fn1EoFAwe0B8C33CueVV21y+HpnBh/iHkcjmXQ2MY3Mkd86JFKFvKArFYTNdmDTm5bAau taqqWyJdJ83DoEF7SrfuTYi/H95tatHYwhSAs65VeNyhDt3L/t8GrXbxwrxNz1p/eYHv07WIMcZ6 uizYdUQp8YqbFGZQ+xYcXzCJxIu7ebl3FT67VpAhl7M9Oo7BgSG0DAqjdkAwtV+/Y2pCEnPiE9mC gh4ebuycPpJTi6bQul5NpSTA/6SocSEm9fGge7MGKBQKRnZxZ9PEIQUyAQaoUtaKlDQJcQnfXzio LmLj41m9bQ8p/+jK9y2OX7iCe5+hxMQVnJbxmcGiRHEcbMpw/vx5dUsRyAaZnglOTU1l1KhR+Pl9 2SI2Ojqan376idjY2C/2+fn5MXz4cLp27fppm57exwtxSkoKAwcOpHnz5syaNYvTp08zZMgQTp06 haWlpcr353dWLl/Ow4tnueJaCS0h+c0WYrEYUz0d0v5V76ejrYVb3Zqfvk5ISqHd2JlMHdidxjWr 5Ji+6LgETly7y7YGjuhpimlV+vNaT21NMRVMPm82YGWgw1nBIFElVBGL8Xn7QelxdXW0sbU0A2Dh L30Yt2obHVycGVS5HLraWvRs4aL0RPd7fAiPpP2EuYzq2pr5Q3rl6Ni5ldCIKIoYq3ftRVRMLHuO ncb7tT+BwaGERkRiXcqSF2/88XsXwOZ9Rzi6cTmlLb/uDx4Xn8C8tVtYsHYzwH96RxdkYuITcHJy UrcMgWyQqczIx8cHDw8PQkNDv9h3/fp1OnTo8J82OH5+fjg6OlKsWLFPfwwNP96MT58+jVgsZtKk Sdja2jJ8+HAqVKjA/v37c2R/fiYkJITpv09hXz0HDLWEqhdlcKRpFfadv4bHhNmERsV8sf/hizeU 8/iJ64+8aTt6Br+v3U50XM7MCC3YfhAH00J42Jh9kQB/C6lgE650XqWl8Ugqw9nRTqXjjOrWFumN gxyYPY6RXdswuEPLHE+AgyKiaT5yJu1darNgqJAAi0Qi+rVqgotHHwKDv7xfqhqZTMbth0+YtGA5 FVzbc+u5H1XrujBi/G/06jeA1h7dmDFrDuHh4Tx5/hLvV2++GufGfS+s67sRna7g/fv3AGgJi2i/ IDo2tkC9Xc6PZOpTfe/ePVxdXRkyZAhVqnw+u3Xz5k369++Pi4sLLVu2/GxfQkICkZGRWFt/vQ71 8ePH1KhR47OVlU5OTjx58iRH9udn/ty8mXZWxbEppK9uKfmG2sULs6p2WQZeuU1tRwfG9fb4tC8g NIKWv06hm6Uxa2PiSEmTMH/bAeb8uY81E3/h5w4tVeYbnJGRwY7Tl1hSuVSWzvNPTEUvd1oZ5zlS 5HIGhkYQpFAQmZJGx0bOjOrWRuXjqtuLus7PEylV3JQN4wepXUtuYcXI/qRK0mnYqRfv717M0bE7 DhrFnUfP6NylC2fOnqNmzf+/pXJ3d//076tXr2JVypJmDep8ESMqJpZ+Y6eyfMUK+vTpg0wmA/iu h3RBQyqVEp+QSLt2ucsRSCBrZCoJHjDgvz0eJ02aBPBFLTDwqXRi8+bNXL9+HUNDQzp37kyfPn0Q iUSEh4dTtmzZz84pWrQoYWEfLYFUvT+zSCQS0tLSsnSOOpFIJKxavoxTDQpmXZ4q8SyM0B8sAAAg AElEQVRriVdkIrvOXmV0zw5oaGgQEhmN26+/U8dEn2V1ylPe2JAOViUorq/NDC8/hs5bxeZj56he zha5XMHUgT0oqaRWrUkpqbj8PAFRRgatS2ct5rkPUdTSVn/r3vyAW0g4RYqbMrdHe6raWVPBOmsP JHmN3eev4+0XQJoknWurZgizhP9AT0ebzROHYOrel33Hz9C1rVuOjJuQmMTJi1cJCQnBxOSjL/h/ 3beqVatGulTGxHlLWTRl7GeL+LbsP0LJ0lZ06dKF58+fs3PnTgBhod+/0NTUpK5TdSZOmMC1r6yT EvhvJBIJ8KW1ojpQ6ZXL398fsVhMqVKl2LBhA8+ePWPu3LnI5XL69+9PWloaOv9aPa2trY1U+rHu UtX7M8ubN2+Ii4vL0jnq5MKFC9gbalOxiJG6peRLFta2p+yR+9i078++Ob+xfO8xtJMSONTmY23Y oPL/T4Cm1ShL2zLFGHjLl9MfgkiUyth87ByPd62isl32nDquej1j7LJNRISF87K9E7qZTETkCgXL fAL4kJzGFtsS2dJQ0EmXy2kXHE5QYhIvj2zIthtEbqTJ8Kk8ff0OW0szgqNiSJfJkMkySExJZdbP PYQE+CvoaGvRpr4TA8dPpVUTFwwNVf9Gbvuh45Qv50BISAghISHfPX7xkqX07t2bK3ce4HVq36ck VyqVUbx4cV68eMHWrVtZtWoVAKERkViUUF7jlryOSCTiws71FKrgzK1btzAzM1O3pDzH1yZPcxqV Xr08PDxo1qwZxn8tEHBwcCA2NpZdu3bRv39/dHR0vngSSE9P/9R5RdX7M4udnV2eWkg3bcJ4PEsV UbeMfIumWMxtt6pUP3oP16G/oaWhwbHGjv85U1LNtDBebWt9+trx8B0a/jyeS2vmUKP89+tGk1PT kKRLkUillChiTLpUxunbD+g9dRFdShdlUVsn9LOQiLyITeK3B29wMdTHRkeYCf5REmQy3ILDCUtO 4f3h/JkAAzx78x6LoiY0qFIe08JG2JU0o12DWmgLaw2+yY4pw9Ft0p2pS1fRvH4dZi5fR8PaNZk5 ZhjaKngDY1K4EPp6+jg6OmbqeEdHR0JCQjAzM2PFn7sYOaAXGRkZPH35GrtK1XB0dGTs2LE4Ozsz bepU7j32pkPLpkrXnZfR1dHB0qwEUVFRNG0q/Gwyi0Qiwc/PDysrK3VLUW0SLBKJPiXAf2Nra0tE RAQAZmZmn/79N5GRkZQoUSJH9mcWHR2dPNMScc2qVTx79JAdrWt+/2CBH8ZCX5ewHi4/dK53+9qY 7LzKnycufDcJfhMYTP2B44hPSiJDLkehABEfZ3MnV7VmavWy3zz/3/jEJFLj6F0Afi9R7If0F2Tk cjknE5LYl5LK3bgEGlWvyPlRAylZ3FTd0lSGkYEererVZN5g9Xth5yU0NTVYMrwv49fsYO22PfRx b8zB46c4cfEKzy8dV8F4mhQqZJSle5Wuri5z5sxh9MSJPH35mrcBgcSlSNiwYw+6urpYWVlhZWXF 5cuX8XtfcDr/ZZbFG7aRlJKKq6trnskRchOqeBjMKipNghcuXIi3tzfbt2//tO3ly5fY2HzsWla1 alXWrl37mbH4w4cPcXZ2zpH9+Y1FC+azZsE8zjethIGWsIghtyIWi6lTvDCxCUnfPO7AxRv0nb6Y jlbFGdrAAQs9HeR8dHPQEIuw0M/6RTcy7WMp0I2yZbDQFiyPvsWemDjupaRiqa1FUkYGkbIMvOQK EiTpVHew4c7CyVS1K5OvywG6T13Ch/AoJvZsr24peZJfO7szpENzFArQ1tLEy/ctDYf9zpt3AdhZ K3cW7MFTH6pUq57l80aMGEHZsmV5cP8+L9594PCRo59qiuGj09COHTu4fmCrEtXmfRQKBePnLGbF ihWYmubfh+D8jkor3Zs0acLDhw9Zt24dgYGBHD16lM2bNzNo0CAA3NzckEgkTJ8+HX9/f1atWsXL ly/p3LlzjuzPT8yY+jvrFs7nomslwREiD7DAyZ69569x6ub9L/YpFAp+W72VfjOWsNrZjj8bVMCp WGEsDXUpZahHKUO9H0qAAYrqalFYW1NIgL9BlExG96BQpoRFEmZpzouSFkQ62GJatyaLRg0g6ux2 bq6fi1P5svk6AQaoW9kBAAWCld6PoqWp+al0pIaDDb1autC671Clj1OiqCnLli37oXPLlCnD9Bkz uP/g4ReLycPDwylrbUXtapWVITPf8OT5KwAqVKigZiUC2UGlV/AaNWqwYsUKVq5cyZo1ayhRogS/ /fbbJ6sWQ0NDNmzYwLRp02jfvj3W1tasXbsWc3PzHNmfn1i0aDHHGjtS0kB4JZMXqGxqhFgsoqJt mS/2/bF5DxsPnuJB65rYFTZQ6riOJoZoi8Ucjkugo3EhpcbOD8TIZLgHhVGubBn8fv+VMuYFeyFQ TPzHtxV+QWE4lf+YHKVJ0tl3+TY3n76kfpXyeDZviIaG4ByQWUZ2bsXu8zeUGjMtTcKuo6e+6eT0 oxgZGQnd4r5CBTtbXBvWxdXVFfhYKiXYBOY9spwE+/r6fnW7lZXVV/e5urp++pB8DUdHRw4ePKi2 /fkFB7uyvIpLpr6ZyfcPzkMkpMvQEovQ0RAjzmcXGD1tbaR/eXD+zYkb95i/dT833GooPQEGEItE NLQw5WyEkAT/E780CdOiYngqSadWBXuOzZ+IYQ43nsiNbD9zleEe7lS3t2H5/lNsPXMVb/8A9PT0 qFmjOl4nrhEZl8jY7qr3RM4v3PHxxayYciwSn7/2Y+zsJTx94UtNp5qsXLlSKXH/iYmJCUnJyUqP m9fR0dHm/I71PH3hSzU3D1JSUjAw+PKaHR0dzaJFi0hOTqZ///5UqVJFSJZzEfn7XV4BopaTE8ev nKWLjRmFtPP+f+u7xFRGP3rPlaAIFAoFEqkMTQ0xOpqa6GhqoquliY6GBjqaf/3REKOrIUZHLEZb Q4SuWIyOGHREInREoCMGXaCiiQHNLE0x1lF/OUAhHS0GzVnJhdWzP9Ws/7pwHb2sS1DZVDX2dhly BYfehtK/iHpbuuYmlkZEsSE+ke7NGrDZswMOpfOOE4yqeOb3nhM3HxKTkMClh8/QadyNkpYWtGnb jgMjRuDg8LFM4ujRo/Tt3YtWdapRvkxJNavOG+w8f4OSFsqx05q3ZgsKLV2uXLuGg4ODSpKrjIwM kpNTkEqlaAmtk7+gSgUHqlWsQJUqVUiXSJg8ZTKDBg3G398fe3t7FAoFFR3sUKBg5cqVTJgwgXnz 5qlbtsBf5P1sSQCAZWvW0t2jEyte+jKlShl1y/lhJBlylr34wPJXIYweP4Ej48ejra2NQqFAKpV+ alwikUg+/fn7639u/9q25ORkdl+/xpDDd6laoggtixngXtKU8sYGankyf9K6Bo7HHzJz426mD/Ik IyOD0KgYfq1b6/sn/yDpf7U39/nLrLygMzgskqsJiZxcNIWmNYWaR7lczpSNe9l29hoWliVJSk0j Pl3OmjVr6Nu3L3p6n8+Ot2/fnp8HD6HpyJkEHV4nNFTIBP7BYYwZMlApsaxLWWBlaEq5cuWUEu9r PHr0iDo1qwkJ8DfYvWIeWw8eIzkllcGDhzB92nTCwsPp2NKV7u3ccWtcH309PS7evEOrvsOYNWsW mvl8PUFeQfhfyCfI5XLCw0Kpm4dbW14JieFXr3fYV63Og6dnP2u3LRKJ0NbWRltbGyOj7M2Spqam cuXKFU4ePUL7EydAKqGFuQlu5oVpZF4E/Rz6GRrraFNUS4PgqBj2nr/G8AVrkcpk2Bsrvwzib6L+ cof4s5SFysZQNTNDI+hiUohy2bQkGh0cxtXkVF7sXom1hdA0BOCXxRvZc/k2fn7+FC+euXro8ePH s3DhQrx8336qGxb4b4oZF+LSzbuM6O+Z7Vg62trcfvQIhUKhsgf5yMhIihQurJLY+QUHW2vmThhJ erqUhrVqUNrSnOSUVOo7ff7w0LhOrU8z6r/8MoyVK1epUbUACElwvmFgL08sEyIZVjfvtUoOTZEw 8UkAd+IlLN+4ReW92PX09HB3d8fd3R2FQsGLFy84eeIEy44covfN29S3LE7LYvq0LFmUMkaqqws9 HxTFq5gEku96cfjiDQaXLcHv1ZQ/Czz8ri8+MYlULWLIkfcRlDPURzcPztjFyGRMCAnnclIK+1NS qaqjzZgixlTLYu1uaLqUDkGhxKRL2fvHGCEB/osNR8+z4dh5Vq1alekEGGD7tm3YlS5JJZvSKlSX f2hdryYbjl9SSqwBXTuyYF0b2rdry4GDh1Tiu+rv709FB1ulx82PaGtr4dGq+X/u19DQYPPCmVhZ WuDaYyDDh/+KvX3eu2fnJ/LenVDgC/z9/Tl28iQratrkqcVjGXIFq19+oOapR1i19uD5Gz+VJ8D/ RiQS4ejoyISJE7l67wGBIaH0nb0Qr9KVqX/Bm6qnHjPxoT/XQmOQ/lVKoCz0NTUoX8yEugaaBHSq zYwaZdFUcnIakZrOhheBpMWn8vh9FIMLFeJYybznjiKXy3H2e89TDQ0ur5rJvU0LcGxUh96hkTQK DmN5RPSnUo9vcTAunkbvArG3t+HDsU10cMmfnuFZQaFQsOHoeUau2IKPjw/Dhg3L0vm3b93ErXZl dIXug5liVJdWpKalsXzLzmzHMitelMA75/F/7Ytby5YsWLBACQo/JyUlhZTUNKXHLaj069IBI0MD ChUyEvyFcwHCTHA+YMwvw5hYyQqTXLDYK7M8iIznF693GFvZcO3uoVzjtWhsbEyXLl3o0qULcrmc mzdvsnP7Nibevs3bay9oaGbMilp2mOtnv0VufTMTnrRRbWc/Y21NHE2M0MlQsDMPJr//JEOu4M6G edhYflxUtG78YBYP78u+SzdZuvcEWwKCcdbUYEqJopT614yYTC5nQGgEd5NSmDGwO+M9OxToFdoZ GRnM2LKf0iWKcvyWF6dvPeDBgweZbrn7Tz58CKJs+VIqUJk/KWSgz+iurZmzcr1SSiIKFzLi/I71 bNx7kAkTJlCvXj3q1aunBKUfGTx4MHWcnfFwb0aDWjWUFrcgo6WpSUJCIkWKFFG3lAKPMBOcxwkN DeXY2XPI5XJexiWhUORuU/uwFAnD7vvhcesNo+cu4vKtO7kmAf43YrGYWrVqMWjIUG49eszR02c4 /S6UtheekJ6h3FlhVaGtIWZ340o8TUnlcUqquuX8EOFSGa6BIRjp62FR9PObhoGeLv1bu+K9czln lk4lvpQFjfwCWBkRDUBwejoTQsKoFRDMBz1dXu5ZyYReHQt0AgywbN9J5mw7yEnv9zRq15nIyEhq 1vyxB7KSlhaERcfn+mtPbqKDS20iY+KIiYtTSjzzEsWYOmII/bp0YL6SnQdsbGzo0rUru4+dUWrc gox1qY8ONOnp6WpWIiDMBOdxzM3NuXjxIvt37aTN6VNoZcjwLFOMyZWV25Izq6RnyPGNT8Y7Jgnv +BR8kmV4R8WRIpXRo0cPXsxf8FlrzrzA5cuXGOLRmuNXbjPq/mtW11HdimxlUs7YgNalizE6NIor 1rl/xk4ul3MiIYntScmkyhW46moTkJLKq72rvvnKvU5FB+5smMeJmw/oMW0JMRkZnJKkU6WCHXMa OdO/ddN83+EtM0hlMias2c7YsWNZuHBhtuOt37SZRg0bsOv8DTxbNFSCwvzN8RsP6Dh5IS1d6mFc SLle3cVMTTh0Vvm++J06deLnAf2UHrcgIZPJmLpkDVsPHMXI0AAba2uV1HALZA3hjpAPaNq0KU2b NkWhUHDjxg1cXFxwszChetGcaYaQkC7jdngcPrGJ+KRk4B2XjF9ULNaWFlSuXJlKzWsxvEpVKleu TKlSpfLkLJxCoWD/nj1sGjOA0d1aU6XHcOoXL0x327xRYtCxTHGuhMSoW8Z/MikknBsZcpIzMoj/ a8a6U+O6HLpyG9+kZCralKZsJss52tR34vzy6fScvpR6FR04OHucYN31FwqFAvuuv2BkZMSsWbOU ErNo0aJYWVkRFJl7P1+5ibKlPn6O+3bpoPTP5ZkrN2mvgnUVTk5OvHn7XqUuFPkZmUxG9+ETePnu A9t27CQuLo5mzZoJP8tcgJAE5yNEIhENGzZk5YoV1Pn1VwBed6mPlaHqHA5uh8fR5/ZrrO3sqVan Jc2r12Bs5cpUqFAB3WxaWOUmfHx8SE1OprajHSKRiA1TfmXAjGVUMjGkYhHVNLZQJjESKcYaufPX /VBcPPviEvi1cyta1qlOlbJlMNLXQ19XB6lsBGfvPqZiFp0H6lR04O3BdSpSnHcRiUQ0rObIrrNX MTQ0pF+/fmzYsCHbcW/eusXk9r8pQWH+Jyw6DkM9XSqUtf7+wVnE+9Vrlq9R/udeX18fsVjM0xe+ VHXMG2/AvoVCoWDrgaPMWb2Z2eN+oUvrligUCi7fuseuo6c4cekaF3dtpEoFB6WMd+3uQw6dPk9y cjL6+vpKiSmgHHLnXVEgWwz75RccK1Zk0M8/0/DcU7bVtaeRuXIL8OUKBQt9AlntF8HGbTto0yZ/ t009eGA/Ho1rf3py92hcl8sPntLuwk282jvnig503+JRTBLZX8qnGg4kpeBepwZLRvT/Yp+WpiZt 6jupQVX+ZduU4Swc1pvFe46xeONGfvrpJ5ycsvcznjZ9Bj1nLsRv7wolqcy/HLh6B5sypalYTvnW WHMnjqJ7924EBn5Q6qv2hQsXIpfLcbAto7SY6uLSzbv8vmQ1IRHRDBk6lL5jpiCTZXDw9EWe+79j wMCf2HrgKAlJSUob0z/wA4CQAOdChCQ4HyISiWjcuDGv37zhwoUL9O7WlakV0hhgr5wGCWEpEvrd 9UNa3JKHzy5RsmT+bpeakpLCgoWLuLNx/mfb14wfQuUnL+h+1ZszLaqrSd33SUiXsfdNCKvMc6cf blt9PeY99qHJ8Kn80smNjo3qqFtSvqe4SWHmD+3NufvP8Pb2zlYSnJGRwcljR+nUqLYSFeZfKtuU Zv+l2yqJXdjIEH09faV3I4uJicG5ehV0dXLro3TmCA4LZ8iU2TR3c+fG8uVoamqSlpaK54iJwMeF 5mZmZkilUv5YsYGz29cqpWTFtf5HK0aZTCZ0istlCIVy+ZxmzZpx8foNpvsEceBtGMfeR5Aiy/jh eBeCo3E+84S63Xtz+dbtfJ8AA7x79w7gq92wLq76g0fRSUx46JfTsjLN2pcfKKKlSQMj1XWi+zcf 0tOJkckydWyPIsbcLG2Brt97ukxZxK5z11SsTuBv4hOT8PHxzlaMwMBArly/wbhu+fttkLLo3dKF +KRkfP3fKT324o3bGDpsmNJrjd3c3AiNisW4Yl2mLVmDLJO/2+okICiEtTv2YVKpLmKrSoitKlGq tit9+g9g1apVn5LR6dNncPbsWbZs2UKJEh8nCiZMmIBUpEGT7gOJjM5erXtIeATufYfRtEljYW1C LkT4HykA2NrasnjlKjyvetPl8lPmPnmb5RhSuZwpj9/xs1cAOw8f4Y85cwvME+3fhuZP3nx50ype xJgH25ay+VUQC5+9R54LbaLmPnnLT4ULZaqZRHa5lZTMr0GhNPILwCUgGOfAEGaERXIkLoHyr9/R PiTiq+c9TZVwI12KW50aNKiSOy3z8hsZGRl8CI+kVq3szeBaW1vTqX07Dly5oyRl+RsDPV1MjAzZ ffSU0mOHhEdgZmam9LguLi74v33Lzl27+GP5WrRtqzF71Ualj6MsJJJ06nv0YeHGHXTv0ZPFixez f/9+7ty5w5QpU75YkNaiRQv69ev3abuWlhaXLl/BoVIVyjVpy6qtu7n3+FmWdZy9ehOb+m60atue CxcvCUlwLqRgZDEClC9fnujoaC5cuMCQAf0YWqF0phs+BCSl0vv2GwqXLcfjs7ey1FI1P+Dj44OR gQFFC3/dbcPasgQHF0yi55SFRKfLmFfzyxljdZEhV5CaIef3sEg2xydwyTrzC8wuJibhamT43eMe p6QyJjiMZG1tEtLTKWNenEuzx5OSJuFtSBgjlm4GoLd7Y/ZduElouhSxSMTc8EhMNDQw1dRgc2w8 Pdwas37CkB/+XgUyz8qDp5m/8ygAnTt3zna8SlWr8c73UbbjFBSSUlNp7qK8hhZ/M8SzK5cvX8LT M/tNOP6NhoYGbdu2RS6X4+PjQ4MG9enR1g3r0jn3NjAiKhqRSEQx0/9e4/LK7y2DJv1Bvfr12btv /w87MGhoaLBhw0bc3NyZMH48b6bNJe3NI7S1M7/+IzQiksqVKrJ48WLBCSKXIjyWFCD09fXp2LEj JUuVxvXUA1zPPiLlO6+1jr2PoN7ZJ3QYNoLTly4XqAQ4Li6O27dvM23aVDaMH0TJ4v/d4rJpzcps mTaS3X4hOajw+2iIRST1bcqquuWJlGb+FebI0HAGfQjlSmLyN4/bExOHx/sgAqQypv7cg6gz23mx eyUu1Rxxq1OdYZ3c2TtzDAdnj2fTxKEY6uniERxG03eB+BjoE2RrxTkDA4b2aM94zw7Z/XYF/oN0 qZQj1+7iHxxGld6jGbtyK4eOHUcul6OhoZHt+AYGBkTGJSpBacHAtJARUTGxSo872LMLe/bspVPH Dly7ppqyIpFIRKVKlWjRvDkDJ0wnMenb1whlMXnBCsxqNKJEdRcu37r3RXOWhMQk+o6ZglPbHlhY WbNz126lJJ4dOnTg1u2PNdzpUmmWzvXyeUmlylWEBDgXI8wEFzBGD/+FD+/eEieR4peYisn2KxTW 1Saih8sXx654GcTqgDiOn7uAs7OzGtSqj3379tGtWzfMixVlUm8POjf9/qyNtXlxktJzX62cllhM P3sLxt7zZUlEFLGyDP6w+HKR3O3kZObExBMiy0CsqUFhQ33up6TS+D9qibdHxzErMpqVo39iSMeW /zm+R5O6n/69bsJg7j1/Q2h0LPOH9sLMNG81TMmLRMUlULbLULR1dImJjcWxQnkSEhKUulLdzs6O VUtfKi1efubJm/fEJibTtK7yr6lly5TG58JhJs5dSi9PTwI/fFD6GH+z5c+tGBoacuHGHTq6uaps HICVf+5m57Ez+Pr6cvPmTfqNn8boAT0Z0d8T/4APjJq5gDNXbuBUsyZv375V+mTN/PnzqVmlInq6 WVsY+CEknC69hSYjuRkhCS5ApKSksGr9BoaXL8nKl0HM7eZG62oOVJqwDN0tF3CxKMKeRpUooqtN nETKPO9A7j5+Qtmyuef1fk6QkpJC3z59uLNx/lcXw/0Xi3YdpXpxYxUq+3E0xWLmOtkz6u4rABx0 dfAs8lHrzpg4NqSkEi+V0a91U2o42FDN3obaA8dT+SslIElyORPDIriYlML6iUPp69440zo6uDjT waVgPVCpm3ehESSlpBIV+AGFQoGurq5SE2CFQsHsP2bSs5nyX+/nNw5fvUvvWSupVN4eQ0PV2GXZ lC7Fb8N+okarLip1IzAwMGDgwIHce/JM5Unw2eu3GDR4MPb29tjb29OgQQMa1K/Pg6fPuXDjDjWc nJT+YPc37969Y+nSpby6ciLLb01srUqxc8d2lZSnCCgHoRyiADHk55/Q0dTAK+aj/+HUA+eoNGEZ G3/qyIVJA9E0NcX20G06XXrK7Kfvad2mTYFLgAGkUikZ8gxqONhk6bwbXt60KfnfJRPqZmiFjy2T K+nq0MP4Y3Irl8uZFhbJoK5tCD25haUj+uPZshHpMhlp6VLcCn/eCOR1moS67z7wrnAhbm+Yl6UE WEA9lLOyBODZs2cULVoUQ8Pv13lnBZlMhtfjJwzv5KbUuPmNcat34PnHCtq1cOXoJtX6KT/yeYlO DtiZOTo6sn7XgS9KE5SNno42Tx7/v+bczs6OJ0+fUqNBY6ZMncqZM2dU5sF74sQJXBvUpWyZrDXs AZgzbjgPHz7k7t27KlAmoAyEJLgAEBISws8DB7L/0GFutHLidngcANIMObqaGuy/+wyrosacndCP 61MHEa9nwKrnAUyeMVPNytVD4cKFKW9vz+K9x7N03ri+nZn+yB/vmNxbG9nIwpQaerqfVin//bd7 3Rro/eOmKRKJEAHhUhkvUtOYGhpOvcAQ3N4G0rVZA7x3LqeafdYeEgRynsev32LS/OMslKpKmrS0 tKhaqSJP3rxXSfz8wrYzV5g6Ygh7Vi3AooRq11bsPXmOpUuXqtzBZ9CgQSQkJrFh9wGVjXH/iTcX bt5l7Ljxn203MzNj9OjR/PpXd1RV4e/vz/lrNwmLiMryubq6OvRs34qdO3eqQJmAMhCS4AJAK3d3 Hj15wr12taliasSG+hVYWMseSf9m3GrtxN3XAdiNXsSgzUcxNdTHtZIdnTt1xM7OTt3S1cb+Q4eZ vmkfIVGZ94j8qW0zmtepwch7r/FPSOF6aAzvElNVqDLrWBjoEvcPq7S/bdOK/MsFoqqdNZ2b1qeB fwCdg8MIKG3JlEE9iDm3gw0ThwoLPXI5J24+oOGwqTj1H0fz5s04ePAgenqqa5+uqaGBlmb2F9jl VxQKBbGJSWhq5czPyM2lHmtWr0Yikah0HD09PXbu3MnSzTuJT1DNw7/f+0ASE5Pw9X2lkvjfY9my ZfTp3ZvSdZr9kK3dEM8urF69mm5du5CkxC50AspBSIILACEhwbQrU4Kqph9fgfext+TXilYAVCxi RFTPRjzuUIfnL/0oP3YJ0w6cZ8as2eqUrHYcHBzw6NiRntOXcu/560yft2XycKI1dKh9/B69br2i xtE7PI5KUKHSrJEky8BA/P8ENvIvd5DYr7hAbP/9V55sX0r4qa1cXT2LwR1aUshAaPuZ21m67yQd Js6jYu16jB8/nsOHj9CpUyeVjpmcmkpgWKRKx8jL3H/ph4ZYg4HdVPv/8De1qlbk5atXSnH++B49 e/bEqbYzY2YvVklZRPd27vwxdjhnT59WeuzMIBKJ2LptG82bN2Pp5qzP6DrYWlgFohQAACAASURB VBP97CZasjTs7ey4cOGCClQK/ChCEpzPOXLkCKkpqcyuYfvN4yqYGHLNvQaetuY0cHbGwcEhhxTm Xlq4u3PjyQvqDfqN4MjoTJ1TyFAf772riL28j6DT2xnQrgXtLz4hKQv2ZKokMV1GmvzjjepaYjKd g8Pp6lqfymWtvjhWU1OD8mVKYqCnm9MyBbLBuJV/MmHCBNavX8/8+fMxMFBtp8AF8+cSHBxEBxeh bfJ/UaFMSWwsS+AxaJTKxwoICmHZ5h306dM7xxoarVi5ist3HrJ8i/Jf+8tkMm57PaFk6azX5CqT jIwMvJ75/NC5JoULs33pHNq5uvD7lCl5ouNeQUFIgvMxUVFRdOzYkd2NKmJX+Ps3wkSpjGPBsWz4 888cUJf76dWrF6mpqRQxMSY4MuaHZjmWjByAhrY210KV7wmaVR5GxnMvPJajiUlUfhtI/w8hNHCu zvrxg4XyhnzCh/CPdYt16tRR+VgymYylS5cyYeIkDs0ai5G+6sot8jpG+npcXj6dmw8eqcQf+J/0 Hfs7usbFmJWDb/OKFCnCmbNnmbf2T+at2USf0ZOZu3pzluM88n7Bss07PrvWHjt/hQ8R0cxQ4xqV xMREvLwe0dq1Ubbi/DH2F7RFckpaWnJaTTPbAp8jJMH5mOHDhgIw6aFfpo7/3cufOvXqUa5cOVXK ynNUrVKFuj9PpPX4ebwNDsvy+QZ6uiSoeSbYLyEF93OPGNG9HZFntvPwz0UkX97L3j/GYCgkL/mG lmNm0bFDB9q2bavysc6dO8eiuXPYPW0kDauUV/l4eZ0zdx+hq6NDIUPVzsxHxsQyYOBAzM3NVTrO vylXrhx37t7l0IXrBMckMHnBMlp4DsI/4PtexTKZjA27D1CzdVdGz1zA5r2HPyXCNx8+pnuPniqt ac+MvqioKJZPm5CtOKYmxlzZu5mfu3dk/ry5SlInkB2EJDgfc+jIUTrVqsjbxBRG3vn2ogL/hBS2 vgnh+q1b/DJ0CKGhoTmkMvczZ9583r59SwlbB+y7DuP528Asna8ApHLVWgh9i4jUdJqd8aJVQ2f+ GNSTQgb62JWyQCcL7T8Fcj+PX7/F9/0HNmzcmCMz+97e3jhVsKNL07rCm4TvEBYdx8gVW5k2aija 2toqHatCWRtevlRP4xIbGxseej3i0uUrxMbGUsLKGruG7hR2rEPpOs3RtatB2wHDSUv7/4K9l2/e UqtdD9btPcqQIYO5fPkyvy9Zg1GF2nQdNo4VW3ZiaWmplu/nb0xMTHBt0pj9p84hkaRnK5ZYLKa+ UzWu37jJpk2blKRQ4EcRkuB8jIG+Hi7lrbk+dTD7P0TjePQePv9h39X35ku61K3K83nD0Qx8gYWF Bb/8NZNc0NHU1MTc3JxtO3by22+/MWD+uiydb1emFA+j1WObliSV0fLcI8qWtWb7dNXXIwrkPDJZ Bj5vA/l1+Z90bNcWU1PVe1VHRUXx22+/4VJZWDvwPeISk+k5czmlLcwZ83NflY515fZ9jl+4go2N +u0LjY2N2bFjJ69fv2brtm2sXL2Gx48fEx6XhLlTY9r/NILRMxdQo3UXGjZpxv0HD1mzZi2NGzfm 3fv3nDt3ntqNXLl37x69e/dW97fDH7PncOzKbfTsa1Dfow9TFq7gkfeLH4rVrEFdurZpibe3t5JV CmQVIQnOp5w+fZq4+ASkGXJqly3Fu+XjaVq9AvVPPaTq8fvs8///TO/t8Fh8YhKZ5eFKicJGLO7e EveqDqxes1aN30HupHPn/7V332FRXF8fwL8LSxUE6SpYEVBQQURQBFHR2FHsig1ULBg1JmLs2HsB 1Cj23gsGbFiwooKA0hSsIFKk9wV23j98Q8JPRMruzsKez/P4JM6dmXv2eJc9zM7cOxLBka/xMu5D lY/pad4eT1KyhBdUJZa+eIdiBUUEeEnmnM/1xZOI12gzxg2tR82Gz5WbKCkpxfvEZOy+cA0tR86C 6cT5sLbvh7MXLgo9FoZh0N7EGGP62GC4Ha3+9zM+VwMQGBqJa8f2CrWfrOwcDJk6B76+vujfX3wW LmnTpg0cHR0xdOhQtGvXDo8eP8bBQ4fRf9hINNBphuvXb2Dnzp2Qkfn3mykFBQV0794dCxYsQJcu XcTimwYrKys8CXqKT58+4Tf3xchiZNFr7FT8MsG1RtPD9bPrDk9PT4SFhQkhWlJVVATXQ+Hh4Rg7 ehRaaalhWk8LAICinCx2TR6C957uGN/TEnOex8Hk8jM8TMrAjKBYzO3fHY0b/btE7tJhvQAAISEh rLwGcdW+fXsMd3REvwVrcPfFK6Rm/Ly4NTdqjXdZuYjKEP0ckckFPNh2al+2KAape07evI9ec5bD 1W0utnntwprjvlDsNQZtRs3CmuOXsXn7DvD5fGzeslUkU2JxOBy0MzKCcUs9NNVUE3p/dV0/SzM0 UJCHbmNtofVRUlKCJZs90cPWFr/88ovQ+hEEGRkZODo6YsaMGVizZg169OjBdkjVoqenh+HDh8Pb 2xuv37wBnysH/R4Dqz2H8MThQ+C1ajGGDR0q9BX3yI/RJ2M9ZGVlhdEW7fBm2+9QlCt//5mGcgMs crDDh53uGGVrjsEB4UguKMLCQbZl+3xOz8LkvRcAAM1YnpZG3HC5XJy/cAGTnKeiz68r0XiwM87f eVzpMbamxhjZxxbdrj7DplcfRRTpNzbaKjhwNQBJaezPTkGq72F4NKZt3IMLFy7C3d0djo6OePfh AxITE8Hn85Gckorx48eL/ErZn0uX4eiN+ygt5f98Zwln0koPygry2LjnoND62LD7AHYfPY2t27YL rQ/yPVVVVWzctBkrPVZh3e7qzYbB4XAwa+IY8IoK8fhx5Z8hRHioCK6HCgsLcfVF5Q/CKSvIwWOE PV5vXYA7S6dBWeHfJXNHeZ7Eu5R0fPz4EZqamsIOt07atGkTTpw4gR07dmDZgTPgFRdXur/PYjcE 7tuAzS/fwzv6509LC4qsFAcMgPjkqs1zTMQHn8/HznN+mDxpEgYPHly2XVZWFtra2qx+RdyrVy80 1m2O+d5HWIuhruBwONg0awJ27j8KHq92D1X9yPPwSKxdu5Zm9mHJ8OHDEfU6Fl+Sq7dgTOz7j8gv KIS8PM3FzhYqguuhP/74A0lZOQiMfvfTfRs3aogOzcpPpWPZpjl6dLeGrq6usEKsF8aNG4eJEyfi c0oaElJ+XmR2MmgFb/dZ2Pbyg/CD+3/znsTA0c4KFu30RdYnqb2s3Dw07DMe4R++YO068ZtKSUpK Cr5+frgX+Q77r95mOxyxN6yHJZppqcHEfqjAz7113xFcDbgLFxcXgZ+bVE2jRo3QycwU94KeV/mY iNex6DV2KrZu2wZzc3MhRkcqQ0VwPbR+/bcPzeXnA1DKr/7XletG9sHnt7G4fv36d21071J5u3bt goNNF7RqqlOl/R1trZBSUIRsnmjmDW6n1hCdDNl/UpxUXWZOHnrOWYnhjo6Ie/dOJLM91ISKigpO nTmLlYfPgycmKyKKKwU5Wdz18kBubg7Wee0T6Lm5XGlYd+0KbW3h3XNMKpeRkYEXoWFoodukSvuH RkSjj5MrNm/dBmdnZyFHRypDRXA9JC0tjaioKDx6/QEfUqt/L6i8rAzcB3TDmpUryn19Fx8fDykp KVhbWwsy3DqNw+FU6+EgeXlZNGqgiBsJX4UYFZBZVAw7v2DEZORAQ0VFqH0RwYlP/gqN/hOhqdsc Bw8fEYun4ivTunVr5BYUwu8xPUD7MwpyspgxtC8u3xDslfPQyBh0NDMT6DlJ9dy8eROmxm3R1dy0 Svv/sX47Vq1eg3Hjxgk5MvIzVATXU23btoWcnBw8rz+q0fFjunaEFocHxyGDUVxcjLy8PNjZfnt4 7vHjx7Dr0UPirwrz+Xzc8PeDgV7VrgL/Y9XMiZjxKArRmcKZLYJhGEx7FI0kSOP02oWYOsReKP0Q wXPbth/S0tK46ucn9EUVBGH2rFmQk5ZGl3Zt2A6lTuBKS5ebCkwQin/yPAIRrqSkJGzauBF9bMov VZ5fUID4xCSkZWSW2+53+z6CX0ZgwoQJogyT/ACX7QBI7SQlJUFbWxvJyck4e/YsZs6cCRkZGTAM g6KiIqTk5NfovDJcaZyeNRIKk5dhzJgxuHjx2/yjakoKSM8tQOD9+4J8GXVSSkoKHgU9RcD66i1C MXWIPUKiY9HLLxCX+5jCUktVYDHxGQabX37A/eRMPDm4FW30RLt0Kqmdt5+T0LpVS1y6dAl2dnZo 0qRqX6+y4dOnTzhy9Cg+nN9DU6VVUUlpqcCnK2QAsVgcQ1JFREQgKjoandrqIy0jE6oNlfHryo3Y c/QUZGVlUVJSAnubblBTaYjAp8FQUFTE2bPnWF0GmvyLrgTXYYcOHULjxo0hJSWFxo0bY+7cuejR 3Rrx8fGY6uKM5toa2DZ+QI3PL8OVxjX3KXgV9AgudhbIPrASKX8tw6uN8wB8uxIqqc6ePYtePWwx aWDvGs3Nusd9JmaMHoJ+11+gWEB55DMMOl0Owrrw9zi34U8qgOugO14e6N3BAEv+WICmTZti08YN bIf0Qzo6OlBr1AhWM5biN68jSKnCnNmSLi4hCRwpwd3iwuMVQ4ojBTk5uZ/vTITC3t4eYWFhKOTI oq+TK6YsWIaId5+QkpKCoqIifPjwAfPcF6ODVXfs/msvXr6KEPu5nCUJFcF1SH5+PiaMG4su5p3w 7NkzODs7Y4h5WzRVU8FJtzHIO7QK/KyvaNasGR7dvIanK13LLYBRE33at0H0prnYO3VY2ZzDWQWF 0NHUEMRLqpOSkpLg5DQe611GYN9C1xqfZ9X0ceBwgA85BQKJ60FSBuLzCpF95zR6mrcXyDmJaGk1 UoHXfBeEH9kKr9+mYc+uXWyH9EOysrL4nJiIG7fv4F0eg9/3nGA7JLFWUMTD8Rv38eJlzZba/a97 T56j/6SZkG/TCScv/w0TExMBREhqytDQEKdOn4ZZFyuEvn6Li5cul00vqqenh/79++PPP//E0KFD 0aBBA5ajJf9FRXAdkJGRAXV1dTRo0AAfwoPRXlUWlpaWWDmiDy7On4CPnu4YZdUBcjJc3Fk0BcFr 3RC5cS40lAX/ZispLcX0Q1exdcdOkaxOJY58fPahfzcLDLLuXOsHlyzbt8WcoDc1Pj6nuAS3P6fh 4vtkDLkZit5dzGh1uHqggYI8Jva3w4f4BKxevZrtcH5IXl4eHTp0wMJFixD5PoFmiaiEgpws1s0Y j/zCQtx6ULvFEXqNcYalbS98+fIFCQkJsLOzE0yQpMa4XC4OHDiAiMhIaGhI7kWiuobuCRZjiYmJ ePXqFX5f8BvS09PhNWkIZvaxAgC42XdB+woeyJKT4cK0ufDuIzx4Lxhaes0l8qnWlJQUDOrfD+Gv IhB6ZKtAznly1QIYDHfF8tB3WGVW/fv6VoW+x76YeKg1UMDCicOx3GWMQOIi7GugII99i2Zh+vLl 0NPTw+TJk9kO6YesrKyg10ofjYdOh5pKQ1i208dMB3tYt6fFG/5r4TgHBIZFYZvPEfSx6VajcxQW FoHL5cLFxQU6OtV7KJcQUh4VwWKoqKgIp06dwsKFC5Ga+m0FmpgtC6Cv8+98of+7wIWw8fl8rL/6 AF4BT3H7XqBI+xYXCQkJCA4NQ+bN42igIJgVfjRUG2L1rAnYf/RcjYrgq59SsGbmBMwbPfjnO5M6 x3lQbySkpGHKlCm4dP4cDh45KpbzBsvIyOCq/zWkpqYiPT0dvr6+cFq3A7btDdCjgxF01FXxSxdT SEvTtxSDu5lj8+m/a3z87UdP0byZHi1pT4gA0E8kMTR6+DCsX7oI2ZmZmN6nK7L2ryxXAItScUkp 7kS+xUjvs/B/l4qwVxHo0KEDK7Gw7fSpU2jfppXACuB/tNDRwrusPERlVG/KtE+5BXifnU+FRT23 3HkUPvseQHzcG/j7+7MdTqU0NTVhaGiIP/74A68io6Dasi1Wn7yKEcu2YbTHTrbDEwtjelsjLz8f hj0G4tL1gCofl19QgN7jpmGw82wsdF8kxAgJkRz06Slm4uLi4H/jFsLWzkbeIQ/snjQYDeTZmS/0 UGAwWv++HXPP30OHvoMR+OgxmjZtykosbDt79iw2b9mCw4tnCfzcA607w6hVM5x9n1zlY0r5DOz9 Q6DRUAmzHfsLPCYiXrTVVDHhFxs8CKw738KoqKjAe/dufIpPQHx8PAKeh0v0jDL/UFVugDenPDG5 b3c4/7YEzS1742XUz58L8L/zAOk5ecjLy8P06dNFECkh9R8VwWLG398fxSUleJ9S/ZXeaiu3sAjd PfaC67QYXKfFmOZzEcfOnEPUmzisWr1GYqfhYRgGSxb/ibWu49FBv4VQ+rDu2A7P03KqtO+r9BwM vBWGzFI+Ys7sogfhJETvzh3g63sFGRmi/9lQW1paWtBr2hRPo+LYDkUsNGygCHenoUi84oNRdlbo PtwJSSmVryJ5/totjBvvBEVFRRFFSUj9R5+eYmbu3LkAgKZqtZvarLrCPiZCdaoHgmI/ws/PD/v3 70dUVBR69eol0jjE0dWrV5GUnIy5owYJrY8eZsYISkpHcGrlc63e/pwG66vPUNRIDbEX9kJVWUlo MRHxYtyqGRy6d8aSP/9kO5QaGTl6DHaevybxK03+l5ysDDbOcsIvlqboPHBkpfv63b5PP48JETAq gsVMREQERgx1gOpUDyw+cwOlIvj6cKNvIDov8QYA5ObmYsCAAXBxcUHbtm2F3nddYGhoiMYaGpCT Fexyp/81uLsFxvTrib7XQhD+nyvCKQU8OASEQ+7gLSgcvAXHgDD87uSI+3+th1pDZaHFQ8TTyJ5W uHOn6veRihPXGTMQ+v4z+ixYRwtr/I9jS+egpLgYG3bv/+E+ykoN8OHDB9EFRYgEoCJYzBgbG+Pc pcs4ffo0TgS/xlb/h0Lt76+AICw5ewM9e/YEj8ejibwrYGBgADlFBYTFvhdaH1JSUvjLfSYG21lh 7tPXyC0uwcbw99A/8wDJMgq4sG4hfh01CEnXjsJj2lihxUHEWxvdJngd+xaJiYlsh1JtTZo0Qcyb WGg0b42ZW/bRFeH/kJXhYvLAXvA8cBwRMd/fH8zjFSMnLw/t2rVjITpC6i8qgsXU6NGjodesOR68 iRdaH1Yr9sDtsC927NiBO3fuQEZGeFc66zIOh4Nu3awRFFHzRS2qavfvM/A0OQPqx+7C600i/lo8 G8+PbIODrSW2/DoFSoq03rwk09VSx5+TRuCXPvbIzs5mO5xq43K5cJowEVcePMekdbvZDkesrJg8 Av0sO6Lb0PF4FBwKhmHwJTkVfD4fo93+gEXnzjAyonmXCREkmidYTE2Z4ISgp09xa7GLUM6fnJWD 4LfxePHiBczMzITSR33y4VM8CpOAmY79hNpPQyVFXN60GGlZORjf15YeeiPfWTV1DOISdmDbtm1Y uXIl2+FUm4ODA7KystDJtCP8nrzAwK6d2A5JLMjJymC/+wx0aN0Mfca6QE5WFjn5BeDz+TA0aINX EZH084AQAaMiWAwVFBTg8PETcLIxR892rYXSh1oDRSjIyaFNmzZCOX99kpaWhvv37yPqpJdI+hvQ 1Vwk/ZC6KfTNe5y7/RBeQ0ezHUqNNWzYEDNmzUbAs3tUBP+P2cP64UNiCh7Hfcbz0DDExsZCWVmZ vqkjRAjo10oxtHXLZjh2NcVh1+FC6yMw5j1K+XwUFBQIrY/6IDMzE1OmTIZ9FzMYNBPectSEVAXD MNhyyheTJk2Cm5sb2+HUiqmpKfyDQhEYFoWCIh7b4YiF3PxC9P5tDW6Gv8HajZsAAG3atKHlkQkR EroSLGZycnKw29sb/vOF8/DTozcfcfLxS1wOewP/a9egqakplH7qi0kTnGDYWBNnVs1nOxRCEBga iUeRsQg5fo7tUGrNzs4Oei310fvXlejYpiVubF0CdRVlcDgctkNjRXJ6Jown/IbBQ4bg7uEj4HLp 45kQYaN3mZhZtmQx+pu0Qnu9yn/zvxb+GjsCgqGlrAgTHTXIcKXw6N0XjOvSFsO7tP9u/8dvPmLx hTv4mJGDaTNm4fnBM9DT0xPWy6g3bt2+g9teHlBRolkzCPsi339C+/btoa2tzXYotcblcnE3MBBP nz7FUIch0BkyFcsmj8AK51Fsh8aK33YdR7/+/XH0+Am2QyFEYlARLEZycnJw+PBhhK6ehSvBUdhz +ykCXsXCY4Q9GjVQgI1RS7TX0wHDMJh1xA8r1m2AtLQ0Hj0IhLQ0FxaDrDFuxXJsz8qFjVFLNFNX hYqiPKbuv4jD94Lh5ekJl6lToaBAMwxUBZ/PB8MwMNCj2yCIeBjQ1Rxztx9Abm4ulJTqx0IplpaW OHzkKPr164c+Fh3ZDocVrz8l4uK9J3VyNUBC6jIqgsVISUkJeMXF4EpLYfiO42jVqhUAYMX5AMjI yKC4uLjc/s7OzuBwOJg8eXLZNmkOB6cuX8KWW8H4mp6BIh4PpXw+Bg0ciKnTpkFeXl6UL6lOk5KS wqgRI3Dy5gP8NnYI2+EQguY6325fevHiBWxtbVmORnB2eXlCQ7UhLNoK50FgcVVSUorjN+/jN68j mD1rFs3TToiI0YNxYiI3NxdqamooKCyCtcde9LK1QVxcHBiGAcMw4PF4SEhIAAAoKSnhy5cvFd47 t2jxYjx+9hwfPyfiY3w89h84gISEBKz08BD1S6oX7Hr1wv2XMWyHQQiy8/Kx8fgltDU0QPfu3dkO R6D2+uyHgVFbuG0/CL4IVskUB+nZuTCfugg7rwbitz8WYlEdXQ6bkLqMrgSLCWlp6bL/nzB9Jtzd 3b8rcps2bYqioiLw+fwqXdHV0NDA5MmTUVhYiKSkJIHHLAm6deuGWbNmQcZmBPy2LoVWIxXcexGB JhpqGNXbmu3wSD3HMAy2nfbFcp/TKOLxIC0tjefPn9e7+WIbN26Mi5evoK99b3ie98e8UYPYDklo vmZmY/nBc9h3+QbMO5nh2fPgevfvSUhdQUWwmFBQUACfz//pk9GysrIiiogAgKGhIS5dugR/Pz8M +G01AKBBA0Xk5eUjMDQCo+27w7hlM8jJcGk1NyJwC3cdxfbTvti9ezecnZ3B5XLL/cJcn2hra8Om Rw+cDrgBWS4XUlJSKCktReLXDKyZNqZKheKD8Gg0bKCAjvothB9wDTwIj0bPOSvgONQB8fHx0NXV ZTskQiQaFcFiRFKnBhJ3enp62OnpiWGOjujXrx84HA4ePnyIma6uuPzICxlZmeDximHYXBevPyZA hsvFp0v7oNlIhe3QSR2Xnp2LpUuXYubMmWyHIhJDhw7Drl27ERzzFjbduqJV69YIfPgChSWl2DZ7 QqXHXrwXhFHLt6F5Y228PrEDXK74/bIQ/SEBjXV0cP7iJfp5T4gYoCKYkCrgcDjo379/2d+7d++O V5GRAIDS0lJkZWXh8uXL4PP5mDZtGlSV6QEXUjt8Ph8x8V/QfVhztkMRGXt7ezAMU27b169fYWRo AGV5WVgZG0BORga9zE3K7XP1UTDmeB3FiRMn8Ndubxzwuw1Xh76iDL1Kxve1wYaTvrh9+zbs7e3Z DocQiUc3IhFSS9LS0lBTU4OzszNehodhyqDekKGJ7kktPAiPgp3bcjyLiMGwYcPYDodVGhoauHb9 BsJS8uC0Zhf6zl+FN/GJZe2FRTzM3n4IJ06dhqGhITZt2QaPwxfxNTObxagr1kBBHtMH98b5c2fZ DoUQAroSTIhAPXz4CN3bNGU7DFKHMAyD/b63cOH+MxTyihHzPh7p2TlwdXXFoXOXoa6uznaIrLOw sMDf/tcAALNnz0K78fPQREsDo3p1BRgGnS0sYG1tjcjISJiammLUmDEwGDcXfS1NsXXWBDTVVEMR rxjdZi5D2xa62PnrJKirKLPyWpz62sDMxR2r16ylFTsJYRkVwYQISExMDELDwnBgXuX3LhISG5+I 8R47wSspRUTce5i2N8HgocPQtGlTZGVlYebMmVBWZqdIE3fe3rvg7OyCvLw8XL92Df5+f+Ps+Qvl 9vH08saMmbOwd+9fMHNxR7tWzRD78TPaGBqiUEEVdr+uxH1vDzRSFv2CI7pa6hjZsyt2eXvT1JWE sIyKYEIEpFfPnpg9fAA6iOmT6UR8HPK7gxcxcTh37hzMzc3RvHlzSElJobCwEJGRkZCRkWE7RLHF 4XBgbm4OALC1tcW69esBAIWFheX2MTY2hqenF+bOnYcPHz5AXV0dRkZGkJKSQreuVjCZuACxpzyh KC8n8tdgqKuD0Ng3Iu+XEFIeFcGECEiLFi2QnpPHdhikDrj+LBy///47RowYwXYo9V7r1q3RunX5 legePX4Cp3FjMcB9IzymjEAP03Yii+fL1wxsOn0Vl3z/FlmfhJCK0YNxhAjIiZMncepmIBJS0tgO hYi51IwsWFvTYitskZOTw8nTZzBx5q8YvnQblvqcFlnfa49dQr8BA9G1a1eR9UkIqVi1iuCioiIM HDgQ9+/f/64tPT0dVlZW+PjxY7ntiYmJmDp1KszMzNCnTx/4+fmJVTshgpKeng4A0GDpgRtSN5y+ 9QBfUtPQt6/4TeElSWRkZDBt2jQE3LmDDccuIi0rRyT9puXkwca2h0j6IoRUrsq3QxQUFGD+/PmI i4v7ri0tLQ3Tpk1DRkZGue0Mw2DWrFlo1qwZzp07h6dPn8Ld3R26urro2LEj6+2ECAqfz4evry8A oJBXDHk5WtmPVOzsvSCsXLkSioqKbIdCAJibm6OzaUfEfU4S+IwRJSWluPooGPv87iEvPx+pmTmI /ZSA39duEWg/hJCaqVIRHBERAXd3d3ArmPv0/v37WLp0KdTU1L5rCwoKwrt373D8+HEoKSlBX18f YWFhOHbsGDp27Mh6OyGCsn//fuzx9kT0Ka9yC2VcvPcEobEfMNSmC8yNwrrWlwAAH6ZJREFUWldy BiIpUjOyUFCQz3YY5P/xeDwkp6ZCXlawDyMmp2di4MINiPqQgCVLlkBdXR1qamqwtbVF06Y0jSIh 4qBKt0M8ffoU9vb2OHPmzHdtDx8+hLOzM7Zv3/5dW2hoKNq2bQslpX+nobGwsEBYWJhYtBMiKMeP HMac4f3RRq9J2ba1h89j1vaD2HD0ApYf+P69QyTTSDsr3Lxxg+0wJF5paSnu3r2LXbt2wUhPBx0F OKuL84a/0HTodKg21kV6ejqWL1+O2bNnY+zYsVQAEyJGqnQl2MXF5YdtixcvBoDv7gUGgOTkZGhp aZXbpqGhgaSkJLFoJ0QQsrKy8DzkBU65//s+8X8SghX7T8Hf3x8XL5zHl5hXKC4poZXkCEb1tsZv noeQkJAAXV1dtsORWH/8/ju279gBAHjms0Fg580vLMJR/zsVfv4QQsSLUD+RCwsLIStb/t5IWVlZ FBcXg2EY1ts5HE6VXkdRUVG5OSjrmqKionL/JVVXldxFR0ejsKgICalpiHj3CRuOX8a9kJeYP38+ evbsiSZNmqBrVyso2I2G7+bFGNDVXFThEzGko94I6ioNsXzZMuzes6dcG71Xa666ubt+/ToAIOP6 ESgrKggsjv1+d9CyeTMoKSnVic8NGnM1R7mrmX/yxePxWI5EyEWwnJwcCgoKym3j8XiQl5cHh8Nh vb2qYmNjkZmZWeX9xVVFDzWSqqksdzIyMnCbNQtWU90BAMbGxli6dCkcHBwQGRkJALhz5y6OHTuG Kw+CqQiWcIVFPCgpyOHQ4cOY7eZW4T70Xq25qubu7bt3cHcaKtACGAC2n/HDxm07EB0dLdDzChuN uZqj3NVMRXcQiJpQi2AdHR28eVN+VZzU1FRoa2uLRXtVtWnTpk7fx1VUVIS4uDjo6+tDTk70qyPV ZVXN3eatWzHN1RVBQUGYMGFChb9kKSkpoVcPW2ya5QQVpQYVnIXUd0W8Yij1HgsAOLB/P4yNjcu3 03u1xqqTuzdv3oDH4+GPsQ4CjYFhGMQnpaBt27YwMjIS6LmFhcZczVHuauafvDVv3pztUIRbBJuZ mWHfvn3Izc0tezgtODgYZmZmYtFeVXJycpCXl69NKsRCfXkdbKhK7jp06IAOHTr8sN3ExAT9+vXD iCWbcXG9u8CvQBHx57TaEy2aN8fbd+8gJfXj55LpvVpzleUuNzcXBw8exPatW7B7wbRyM7kIAofD wYLxQ9G3Tx+8ioio9gUXNtGYqznKXc387+2qbBDqinFdunSBnp4eFi5ciNjYWJw6dQrXr1/H+PHj xaKdEFFbtXYd3n/NxqI9x8Hn89kOh4iYHFcavXr1rLQAJsIzZ/YsXDjigz1zJ2HaEHuh9LFh+lh0 bNkUbjNnCOX8hBDBEepPYmlpaezevRt5eXlwdHTEoUOHsHHjxrKrZWy3EyJqLVq0QNDTp3gSG48F 3kfZDoeIWMynRLRo0YLtMCTSjRs3EHDzBi6s/g19LDpU67mQ6uBwONj1mwuCnj4VyvkJIYJT7dsh Xr9+XeH25s2bV9imp6eHI0eO/PB8bLcTImra2trw/dsPLVq0gIfLKDRsQCuH1XelpaV49e4Twl6/ hVev3myHI3F4PB6mOk/BAXdXNFJW+vkBtdRMWwPJqakoKSmpcJEpQoh4oO/kCGFB8+bN0VhHG1cf Pmc7FCICey/fROcpv0O/VUvo6+uzHY7ECQkJgUZDJfQ2by+S/mS4XDTR1PjuwWxCiHihIpgQlnS1 ssLG45eRkJKGd59pAZf6iGEY8Pl8LNpz/NuzCW/fQUdHh+2wJM7jx4/RtZ3oli0vKSlFSloGzp07 J7I+CSHVR9/TEMKSv/b5YNEid7RwnA4AuLjeHUNsurAcFamq8NgPuHDvCdKyslHAK4ainBwy8wuR X1AIVSVFPI2Kw+sPn6DWUBkFRUVYv3492yFLrIvnz+Fx0FM8joyDSgMF9OvSAVbt2kCrkQqMmgt2 +su7LyIwa9sBKDZogGnTpgn03IQQwaIimBCWaGpq4sCBg9i0aTPWrl2Lv67coiK4Dll24CyK5ZXR qlVL6GpogsPhoHPLlggLC4OOjg7Gz3WHkpIS/Pz8MGTIEJoRgkUOQ4ehfYcOcHaZioCAAFy6eAHH 7z5HwudELJs0HPNHD6zReXvP9UByWiZ2zJuCTgat4PvwObwuXINuawM8OHWqTk2RRogkoiKYEJap q6vD0tIShw/sx7vPSWjVVDK/Li8s4mHLqSvIKyjE2y+pKCnlY+WUEeig34Lt0L7z16Xr8H/4FKmp qdDQ0Kh0327duokoKvIjC93dy/6/S5cuWLx4MQAgICAAffr0gU1HI3Q2qt7tEp9T0xH57hMMmjVB SnoWPM/7Y83h8xg0oD8OHDoMLS0tgb4GQojg0aUJQsSAo6MjBg4eApeNf7EdCmtc1nnj/JNXkGtp gm4DhkHPpBPWHL3Edljf+ZSUivmeh3D+/PmfFsBEvNnb22PtmjWYuHY3PialVuvYKw+eoZd5e+hq quPGs3CsOXwe3bt1xVU/fyqACakjqAgmRAxERkbizevXePDiFRiGYTscVpy5/QiL/vwTq1evxoIF CzBnzhxcvPOw3D5FvGKUlJQCAPh8PjzP/g1u9+Gwmv4n0rNzhBpffmERJq72RKsRMzDNxQXDhw8X an9ENP5cvBgTp01Hr3mrcfNZeJWP830YjIIiHopLSqDWsAF01BshPj4e69atQ3Z2thAjJoQICt0O QYgYWDB/HgozUvHZ94DQJvEXdxqNVKGurl7292bNmgEAVPs6wcLECLJcadx4HAwA0FRTRV7Bt4fQ 3NzcEPHqFZxWecJv82Kh5e/DlxScvBGIgIAA9O5Nc/3WFxwOB0uWLIWhoREcnZzgOXcKRvfuhoev YmBhpA+1hhXPKzxzWF8s2XsKMZ8+w3fjImyeNRF+T0Jw/JYfjHftQvznzyJ+JYSQ6qIimBAxMGLU aMybO1ciCmBecTFevv2IDq2b4+rDYAzu3hmyMjJo3VQb586dQ79+/QAACgoKyM7OxpMnT8Dj8RAf H4/13vugq6uLT58+ITY2FiNGjACXy0VOTg6aN2uGMwEPMaaPjVDiNtBrAi5XGgUFBUI5P2HXiBEj oKqqigXz58FtxwFIS3Mxub8dvOZNqXB/B5sucPifB1kdbLpgSHcLNBowBRkZGWjUqJEoQieE1BAV wYSIgRkzZuCa399oMtgZ9hYd4b1gGvR1G7MdlsBlZOdi+f5T2HPxOppqaeBzylcMteuKgVZmyM7N R9OmTcrtr6ysjL59+353Hk1NTZibm5fb7/c//sCOE0dg3aEt1FWUoSgvJ9DYj12/hwaKDdCrVy+B npeID3t7e4SGvwSfz0dQUBBmu0yu9jk4HA7UGiojJCQE9vb2Ao+RECI4dE8wIWKAw+HgytW/cffu XXzJL8acHQfZDkngNp+8gjZj3HAtOBJ37tyB5569SElJgZGlDU4+fgUVLR3Mmze/xuefPXs21HWb o+VwVzS0H4dFu48JMHpAQ7Uh8vLzoaCgINDzEvEiJSUFLpcLAwMDvPv8pdrHJ35Nx6cvyZCWlhZC dIQQQaIrwYSICQ6HAzs7O3h5eaP//98SUF9cuPsEa49cwJOgIJiYmJRrW79ho0D6UFFRwfUbNwEA T548gY2NDVo20YLr0F9qfe7S0lJM27gHw4YMlohbVgjg47MPw3pYVvu4xuqNsP3XyejVqxcKCwsh JyfYbyQIIYJDRTAhYiYwMBB8Pp/tMAQqOy8f3bt1/a4AFpauXbti+FAHcP/natzSfSeh3lAJXU2+ zQvL5Vbtal1adi54JaU4e+GiMMIlYij0+XMMNW9f7eM4HA6sjA0AAM+ePUPLli0hLy9P0+kRIobo dghCxExpaSlaNqkfK02Fxb7HeI+duPEsDBGRkSLtOyoqCsUlJWV/T07PxIajFxD0OQsjlm+HuctC ZOflV+lcbz4lIjsnlx6KkyB9+g/Abt8AZObkVftYDZWGGNzdAj169ICenh40NTURHR2NrKwsIURK CKkpKoIJETMLFizAm0+fcfXhc7ZDqbGc/AKo95uIzlN+R56MEnTammLr9h0ijWHo8OHYdPLbCnTp 2Tnot2Atli1dgvMXLyEhMRHN9A1gO3s57oS8KjumtLQUj1/FfFccd+/YFtamxli/bp1IXwNhj4uL C4w7W6HfH+vx6u2nah3bsokWLq37A8WBZ1By/yz6WpqhXbt2cBgyWGLnASdEHNHtEISIGVVVVUx1 ccajlzEY3N1CpH2XlpbiWXQcrIwNanXv6/iVO6Ct0xiJ4eFQVFQUYIRVt3ChO3wvX8Eg9w0IjnqD YUOHYtXqNQAAaWlp/O1/DefOnYOT22zsnu+CZjqacNtxAF/Ss5GRmYmJv/RAT3MTaKg2hIFeEwyw NEVYlGivZhP2cLlc7N3ng8kTnGA25XdEHt8Bw2ZNfn5gBfw3/4nwuA+wnP4npKSkcGD/fji7uAg4 YkJIdVERTIgYmu02B926dsVAa3PYdGwnkj4ZhoHDog24/uQF+lqaoZ+lKfp0MUXbFroAvq2YVpVp x45euwv/x8Hw9/eHlBR7XzYpKysj8MED+Pn5Ya68PLp161auXUpKCqNHj4aMjAxcp7qglM/H0uUr MGfOHCQkJGDL5k3wuR2ML0lJeBUVDQC4e/cuGy+FsERKSgpHT5xEu/btMXGNN4L2rq3xL4cd9Vvg 8Z61GL5kC7w9d1IRTIgYoCKYEDFkamqKo8eOoefIkfhz0kisnjZG6H0e8b+L609e4MWLF7h48SIu 3b0L74vX8dvoQThzNwgPXrzCvDFDMG/UIOhqqZc79kzAQ5gbtcbsrT64/Twc586dg5aWltBj/hlV VVWMHz++0n0cHR2ho6OD0tJS2Nh8W2ijZcuW2LV7D4BvvxycOHECffv2FYvXRERv7tx58Pb0xP3w aPQwrfkvpZ0MW2HvQlcM+P1bMR0XF4fWrVsLMFJCSHXQPcGEiKkRI0YgNDQU205dEUl/c3ccwKJF i2BmZobVq1fD//p19B04GH+Hv8PQ8ZMREhKCO5HvMWebD9KycsqO87lyE+NXbofRGDcoNW6GxMRE DBo0SCQxC0q3bt3KCuD/xeFw4OTkRAWwBJOTk0Nmdja40rX/yOxqYoAeZsYAgJycnJ/sTQgRJroS TIgY09HRQRGPhw9fUtCisfCKsL8uXUdeQSE8PDzKtikpKWHPX3vL7fe3nx/09fWhPXAyfrEyw19/ zMD645dx+fJl9OvXr2xO1MLCQqHFSoio8fl85OXlw/fRC1i3N6rVuaSlpBAYGgn3hQthamoqoAgJ ITVBV4IJEWPa2tqYMmUyTCctwP0wwTyUlV9YBODbtF9JaRlYuOsI3Lb64MqVK5CVla30WD09PRQV FSEkJAQpBXy0HO6K8ZMmw8HBgRYFIPUWl8tFTEwM9l65icSv6bU6l9/jEEhLS2PpsmUCio4QUlN0 JZgQMcbhcHDgwEHEvonFzWfhsDU1rvG5HoZHY8WhcwgMDoeaSkOkZ2UDALQ1NRAcHAxzc/Mqn6tT p054FhyM7OxsqKmp1TgmQuoKQ0ND2Fhb405IBJx+sa328fmFRQgMi8LYlTvg5+cHJSUlIURJCKkO uhJMiJjjcDhYu24dvM7743pQaI3OkZWbh1/me0BZRw+xsbG4eMUXSUlJmD59Gk6ePlOtAvgfXC6X CmAiUdTUNfD2c1KN5vod8udmTFy3B6s8VmLAgAFCiI4QUl10JZiQOsDW1hanTp/BYAcHHFriBqd+ duXaoz8kYPfF67h0/xnatdSF/+YlZUsCp2fnoMkQF7Rr2xZnz56FgoIC9PX1AQB79+4T9UshpM5q oquL1Zs3w+9JKJ75rK/yccnpmbgX8hLR0dEwMqrdPcWEEMGhK8GE1BGDBw+GRefO2H/1drntJ24E or3TXOQ3UMefy5bjzvNwpGX/+9T55LW7oNtUF+EvX0FBQUHUYRNSb/Tp0wcAYNy6WbWOu/E0DPY9 7agAJkTMUBFMSB3iNGECPiZ/Lfv7/bBILPU5gx07duDw0WOYNGkSjNsa4fddRxGX8AUAkJKZg52e nmyFTEi9kJ6ejolO43F4iRsOus+o1rGFvGIE3L0nnMAIITVGRTAhdcjUqVMRn5SCP7yPYPTSLRi8 cD3c5v+GX3/9FQCgoqKCp8+D8bVEGkZj3PDrtv0IjoxBXFwcy5ETUncxDIPZM1wxwrYLnH6xrdaq cXw+H0t8TkFHR0eIERJCaoKKYELqEAUFBZw9exYf8hkUKjZCwO07WLhwYbkP5QYNGuBmwG28ePEC yYw8PD09MW/ePBajJqRu8/X1RejzZ1jvOhYMw+B5dBwO/H0bOfkFPz129IrtyMzJQ0xMjAgiJYRU Bz0YR0gdM3LkSIwcOfKn+5mZmeH8xYsiiIiQ+s1j+TJsnjkOD8KjMW3TXnDl5PExPgGum/Yi++Yx 3HwWjqfRsXAZ2Bv6uv9e8WUYBpcCn+LevXtQUVFh8RUQQipCRTAhhBDyAwzDIPTlKxxUU8Lle08w cOBAXL16FQzDQFpaGg37Tijbd/OJKziy1A3j+36bR7iIVwwuVxqKiopshU8IqQTdDkEIIYT8hFnP fvDx8YGvry84HA6kpKSQmZkJBwcHvHz5sqwo/u/y5sdv3kdJSSksLCxYjJwQ8iN0JZgQQgj5AQ6H 88PFMVRUVHD58mUAQEFBAUpLS+G4eAuG2VqggFeMEzfuizJUQkg1URFMCCGE1JKCggLCwsJw+vRp bNiwAQBw6NAhtGrViuXICCE/QkUwIYQQIgAdO3ZEx44dsX591VeTI4Swh+4JJoQQQgghEoeKYEII IYQQInGoCCaEEEIIIRKHimBCCCGEECJxqAgmhBBCCCESh4pgQgghhBAicagIJoQQQgghEoeKYEII IYQQInGoCCaEEEIIIRKHimBCCCGEECJxqAgmhBBCCCESh4pgQgghhBAicagIJoQQQgghEoeKYEII IYQQInGoCCaEEEIIIRKHy3YA4qy0tBQAkJSUxHIktVNUVITU1FR8/vwZcnJybIdTp1DuaobyVjOU t5qj3NUM5a3mKHc180/eioqKAPxba7GBiuBKpKamAgDGjx/PciSEEEIIIfVPamoqmjdvzkrfHIZh GFZ6rgMKCwsREREBTU1NSEtLsx0OIYQQQki9UFpaitTUVJiYmEBeXp6VGKgIJoQQQgghEocejCOE EEIIIRKHimBCCCGEECJxqAgmhBBCCCESh4pgQgghhBAicagIJoQQQgghEoeKYEIIIYQQInGoCGZZ UlISfv31V1haWsLa2hqLFy9GdnY2AODo0aMwNDQs98fV1bXcsdOnT4eZmRns7e3h6+v73bnZbBem 2uRt/fr137WvWrWqrD02Nhbjxo1Dx44dMWjQIDx8+LBc38JuF7bKcpeXl4elS5fCwsICVlZWWL16 NXg8XrljacxVP2+SPOZ+lDcvL6/vcvLPn8TExLJjJXW8/dN/TXNHY67i92pycjJmz56Nzp07w9bW Flu3bi23YllOTg4WLFgAc3Nz2NjY4NChQ+XOzXa7MNUmb+Jer/wQQ1hTWlrKODo6Ms7Ozkx0dDQT Hh7ODBs2jJk1axbDMAyzbNkyZtGiRUxKSkrZn6ysrLLjHR0dmdmzZzOxsbHMqVOnGGNjYyYkJERs 2oWltnlzdnZmduzYUa49JyeHYRiGKSgoYGxtbZkVK1YwcXFxjLe3N9OhQwfm06dPImlnO3dubm7M wIEDmZcvXzJPnz5lbGxsmJ07d5Ydz/aYEtcx97O8SeqYqyxvubm55fKRlJTEDB48mJkzZ07Z8WyP J7bGG8PUPnc05ip+r44ePZqZOXMmExcXxzx69Ijp1q0bs3fv3rLj58yZw4wePZqJjo5mrl27xpia mjJ///232LQLS23zJu71yo9QEcyiqKgoxsDAgElJSSnbFhwczBgaGjI5OTnMuHHjmEOHDlV47LNn zxhjY+Nyg2zRokXMvHnzxKJdmGqTN4ZhmB49ejC3bt2qsO3SpUuMtbU1U1xcXLbNycmJ2bx5s0ja ha2y3MXExDAGBgZMdHR0WdupU6eYqVOnMgzD/pgS1zH3s7wxjOSOuZ+9V//r0KFDjJWVVdm/L9vj ic3xxjC1yx3D0JirKG+JiYmMgYEB8/Lly7K29evXM5MnT2YYhmESEhIYQ0NDJjY2tqzdy8uLGTly pFi0C1Nt8sYwjFjXK5Wh2yFY1LhxY/j4+EBTU7NsG4fDAcMw4PF4ePv2LVq2bFnhsaGhoTA0NETD hg3LtnXu3BlhYWFi0S5MtclbXl4ekpKSftj+4sULdOrUCVwut2ybhYVF2esSdruwVZa727dvo1Wr VjAyMiprGzNmDHx8fACwP6bEdcz9LG+SPOZ+9l79R05ODvbs2YN58+aV/fuyPZ7YHG9A7XJHY67i vHE4HCgqKuLChQvg8XhISkpCYGAgjI2NAQBhYWFQVVWFvr5+2bGdO3dGZGQkeDwe6+3CVJu8ARDr eqUyVASzSFVVFba2tuW2HT58GK1btwbDMMjIyMC1a9fQu3dv9OnTB1u3bi17IyQnJ0NLS6vcsRoa GkhKShKLdmGqTd7evn0LhmFw+PBh2NnZYcCAAThw4AD4fD4AICUlpdLXJex2Yassd5mZmWjWrBlO njyJX375Bb169cKWLVtQXFwMgP0xJa5j7md5k+QxV1ne1NTUyradOnUKioqKGD58eNk2tscTm+MN qF3uaMxVnDcdHR14eHjg6tWrMDU1RY8ePaCtrY25c+cCqPjfXFNTEyUlJUhLS2O9XZhqk7e0tDSx rlcqw/3pHkRk9u3bh5s3b8LHxwdv374FACgrK2PXrl348OED1q5di+zsbHh4eKCgoABycnLljpeV lQWfz0dJSQnr7f+9AiBs1cnb27dvISUlhaZNm2Lv3r2IiIjAunXrUFpaiunTp//wdf3zZhZ2u6j9 N3fXr19HSEgIiouLsXHjRqSnp8PDwwMlJSVYtGgR62NKXMfcz/JGY+5f/83bP/h8Pk6fPo0JEyaU +zdkezyJ03gDqpc7GnP/+t+8vX37FpaWlnB1dcXXr1+xZs0abNq0CUuWLPlh3ADA4/FYbxel6uRN 3OuVyt6rVASLiV27dsHT0xPLly+HjY0NACAoKAiNGjUCgLKvWhcsWIAlS5ZAXl4emZmZ5c7B4/Eg IyMDLpfLeruoVDdvQ4cOhZ2dXVm7oaEhMjMzcezYMUyfPh3y8vLf/bDh8XhQUFAAAKG3i9L/5u7W rVsoKirCjh07yr5Wys/Px5IlS7Bw4ULWx5S4jrmf5Y3G3DcVvVeBb19Bf/nyBUOGDCm3P9vjSVzG G1D93NGY++Z/8xYUFIRjx47h/v37UFJSAgDIyclh+vTpcHV1/WHcwLfXxHa7qFQ3b126dBHreqUy dDuEGFi3bh28vLywcuVKjB8/vmz7PwPqH/r6+igpKUF6ejp0dHSQmpparj01NbXsKwG220WhJnnj cDgVtqempoJhGGhra1f6uoTdLioV5U5LSwuamprl7qtq1aoVCgsLacz9v5rkjcbcj9+rABAYGAgz MzNoaGiU2872eBKH8QbULHc05irO26tXr9C0adOyQg4ATExMUFpaisTExAr/zVNSUiAjI4NGjRqx 3i4KNckbIN71SmWoCGaZt7c3jh8/jg0bNmDs2LFl20+fPg17e/uye7gAICoqCkpKStDS0oKpqSle v36N3NzcsvaQkBCYmZkBAOvtwlbTvG3fvv27D5KoqCi0bNkSHA4HZmZmCA0NLTf/YXBwMDp16gQA Qm8XhR/lrlOnTkhOTi5371lsbCyUlJSgqqrK+pgS1zH3s7xJ+pj7Ud7+ER4eDgsLi++2sz2e2B5v QM1zR2Ou4rxpa2vj48ePKCgoKNsWFxcHANDV1YWpqSnS0tLw/v37svaQkBCYmJhAVlaW9XZhq2ne xL1eqdRP548gQhMTE8MYGRkxW7ZsKTe3XkpKCvPx40fG1NSUWbFiBfP+/Xvm9u3bjLW1NbNnzx6G Yb7N6efg4MC4uroyr1+/Zk6fPs2YmJgwoaGhYtEurnkLCwtj2rZty3h7ezMfP35kLl++zJiZmTG+ vr4MwzBMbm4uY21tzSxZsoSJi4tjdu3axZiamjLx8fEiaWczdyUlJczw4cOZSZMmMTExMczjx48Z W1tbZtOmTQzDsD+mxHXM/SxvkjzmfpY3hmGYbt26MVevXv3uWLbHE5vjjWFqlzsacxXnLTs7m7G1 tWXc3NyY2NhY5vnz50z//v2ZRYsWlR3v6urKjBw5komMjGSuX7/OmJqaMv7+/mLTLiy1yVt8fLxY 1yuVoSKYRZ6enoyBgUGFf+Li4pjg4GBm9OjRTMeOHRkbGxvG29ub4fP5ZcfHx8czkydPZtq3b8/Y 29t/98OQ7XZhqW3eAgICGAcHB6Z9+/ZM7969mZMnT5Y7f1RUFDNixAjGxMSEGTRoEPPo0SORtgvT z3L39etXZu7cuYypqSljaWnJbNq0qdxcn2yPKXEdcz/Lm6SOuZ/ljc/nM0ZGRsz9+/crPJ7t8cTW eGOY2ueOxlzFeXv//j0zffp0pnPnzoytrS2zbt06prCwsOz4jIwMZs6cOUyHDh0YGxsb5vDhw+XO z3a7sNQ2b+Jer/wIh2EYpkrXyQkhhBBCCKkn6J5gQgghhBAicagIJoQQQgghEoeKYEIIIYQQInGo CCaEEEIIIRKHimBCCCGEECJxqAgmhBBCCCESh4pgQgghhBAicagIJoQQQgghEoeKYEIIIYQQInH+ Dweppj0T3F04AAAAAElFTkSuQmCC" /></div>
</div>
</div>
</div>
</div>

One thought on “Visualise the population of Switzerland using Python and bokeh

  1. Thank you very much for sharing. After a lot of searching, it was exactly what i was looking for !!!!. Have you ever consider to post this in stackoverflow.com? I think you should.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.